Design-based research (DBR) is used to study learning in environments that are designed and systematically changed by the researcher. DBR is not a fixed “cookbook” method; it is a collection of approaches that involve a commitment to studying activity in naturalistic settings, many of which are designed and systematically changed by the researcher, with the goal of advancing theory at the same time directly impacting practice. The goal of DBR (sometimes also referred to as design experiments) is to use the close study of learning as it unfolds within a naturalistic context that contains
The authors argue that design-based research, which blends empirical educational research with the theory-driven design of learning environments, is an important methodology for understanding how, when, and why educational innovations work in practice. Design-based researchers’ innovations embody specific theoretical claims about teaching and learning, and help us understand the relationships among educational theory, designed artifact, and practice. Design is central in efforts to foster learning, create usable knowledge, and advance theories of learning and teaching in complex settings
Head Start on Engineering (HSE) is a collaborative, NSF-funded research and practice project designed to develop and refine a theoretical model of early childhood, engineering-related interest development. The project focuses on Head Start families with four-year-old children from low-income communities and is being carried out collaboratively by researchers, science center educators, and a regional Head Start program. In this paper, we outline a preliminary conceptual framework for describing early childhood STEM interest development, which will be used to guide data collection and program
Learning to See, Seeing to Learn: A Sociotechnical System Supporting Taxonomic Identification Activities in Volunteer-Based Water Quality Biomonitoring is an Innovations in Development proposal to further develop and study a cyber-enhanced informal learning environment to support observational practices and classification skills in a citizen science context. In particular, we focus on the taxonomic ID bottleneck that hampers the acquisition of high-caliber biotic data needed for volunteer-based water quality monitoring efforts.
The emerging field of the learning sciences one that is interdisciplinary, drawing on multiple theoretical perspectives and research paradigms so as to build understandings of the nature and conditions of learning, cognition, and development. Learning sciences researchers investigate cognition in context, at times emphasizing one more than the other but with the broad goal of developing evidence-based claims derived from both laboratory-based and naturalistic investigations that result in knowledge about how people learn. This work can involve the development of technological tools, curriculum
What is the meaning of “dialogue” in education? Why is dialogue important in learning processes? Tran proposes a short review of the literature, starting with Vygotsky and ending with a new field of research in informal learning - conversations among the public visiting museums as a collaborative environment for learning.
Explore findings from a groundbreaking research and evaluation initiative investigating the long-term impacts of museum programs for teens. Drawing on reflections and input from hundreds of program alumni across the United States, this study documents powerful effects on participants, including lasting engagement with arts and culture, significant personal and professional development, and increased leadership skills and civic engagement.
This report summarizes findings from a research-practice partnership investigating STEM-rich making in afterschool programs serving young people from communities historically under-represented in STEM. The three-year study identified key dimensions related to (1) How STEM-Rich Making advances afterschool programmatic goals related to socio-emotional and intellectual growth for youth; (2) Key characteristics of programs that effectively engage youth historically marginalized in STEM fields; and (3) Staff development needs to support equity-oriented STEM-Rich Making programs.
This paper describes Synergies, an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this particular research-practice partnership is attempting to accommodate the six principles outlined in this issue: (1) more accurately reflect learning as a lifelong process occurring across settings, situations and time frames; (2) consider what STEM content is worth
The dramatic decline in youth interest in science, technology, engineering and mathematics (STEM) during adolescence, both in the USA and internationally, has been a phenomenon of societal concern for several decades. The Synergies project was launched to help deal with this issue. In this paper, we report findings from the first two years of our longitudinal survey research. We sought to understand the nature of the STEM-related interests of 10-/11-year-old youth living in a single urban community and the factors that seem to influence whether these various dimensions of interest increase
The nature of STEM (science, technology, engineering, and mathematics) learning is changing as individuals have unprecedented, 24/7 access to science-related information and experiences from cradle to grave. Today’s science-education opportunities include not only traditional schooling, but also libraries, museums, zoos, aquaria, science centers, and parks and preserves; diverse broadcast media such as television, podcasts, and film; organized youth programs such as 4-H, after-school or summer camps, and special-interest clubs and hobby groups; and an ever-increasing array of digital media