To support learning across settings, educators need to develop ways to elicit student interests and prior experiences. McClain and Zimmerman describe how, during outdoor walks at a nature center, families talked about prior experiences with nature, which were mostly from non-school settings. They used the prior experiences to remind, prompt, explain to, and orient one another during shared meaning-making activity.
Wallace and Brooks examined the culture of an elementary science education methods course conducted in a summer science camp, along with the professional identity development of the preservice teachers during their participation in the course.
In 2011 the Bishop Museum and two collaborating organizations, University of Hawai’i at Manoa (UH) and the Pacific Voyaging Society (PVS), were awarded a multi-year grant from the Native Hawaiian Education Program (NHEP) to develop classroom and dockside curricula, an online resource center for educators, teacher workshops, a planetarium show, and a field-trip program for middle school students. The overall goal of these educational products and programs is to make STEM content accessible to Native Hawaiian students by presenting it through the lens of ancient Hawaiian navigational systems.
This Learning Research Agenda was collaboratively developed by the Museum, King's College London, the University of Bristol, and other UK and overseas contributors. It provides a conceptual map of learning in natural history institutions while considering the the complexity of practice.
The author provides a synopsis of the Learning Research Agenda collaboratively developed by the Museum, King's College London, the University of Bristol, and other UK and overseas contributors. It includes a discussion of the research agenda process, the importance of natural history museums, and the types of research methods and questions encompassed by the agenda.
Technology has dramatically changed learning opportunities in planetaria. In this paper, Plummer and Small examine planetarium professionals’ goals for their audiences and their pedagogical choices. The findings indicate that planetarium professionals place a high value on teaching interactively to achieve their primary goal of increased science interest and learning.
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).
The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).
There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
This commentary forms the conclusion of a special Virtual Issue of Science Education focusing on the intersection of informal STEM education and the learning sciences.
Using families as the analytical focus, this study informs the field of informal science education with a focus on the role of prior experiences in family science conversations during nature walks at an outdoor-based nature center. Through video-based research, the team analyzed 16 families during walks at a nature center. Each family's prior science learning experience provided conversational strategies for learning together as a social group and when making meaning out of observations in the outdoors. This analysis provides three main findings: (1) families frequently tapped into a vast
While the opportunity to engage in scientific reasoning has been identified as an important aspect of informal science learning (National Research Council, 2009), most studies have examined this strand of science learning within the context of physics‒based science exhibits. Few have examined the presence of such activity in conjunction with live animal exhibits at zoos and aquariums. A video study of 41 families at four touch‒tank exhibits, where visitors can observe and interact with live marine species, revealed that families engaged in making claims, challenging claims, and confirming
Science Education has a long tradition of publishing theoretical and empirical articles that push the boundaries of learning research in science, technology, engineering, and mathematics (STEM). To that end, we edited a collection of articles that focus on themes relevant to the intersection of learning sciences research and science learning in everyday life approaches and contexts for Science Education.
Most communities have afterschool programs that give school-aged students a safe place to go after the dismissal bell rings. The next step after simply providing a safe haven is to create a nurturing environment that develops young people’s talents and supports their needs. A formal mentoring program can help to achieve this goal.
DATE:
TEAM MEMBERS:
Sara McDanielAnna-Margaret YarbroughKevin Besnoy