Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.
The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
There is a growing need for citizens to be able to work with data and consider how data is represented. This work employs a design, make, play framework to create data modeling learning experiences for young children and their caregivers in an informal setting. The project develops and tests a curriculum for a workshop series for 5-8 year old children to engage them in playful exploration of data modeling. Children engage in data collection, data representation, and data analysis by drawing on their own experiences of museum exhibitions. The curriculum supports developing children's interest and engagement with data science and data literacy, which are foundational knowledge for a range of STEM careers and disciplines. This project advances efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM).
The project is grounded in a theoretical framework for young children's learning that focus on playful exploration, design, and building on children's own experiences and questions. The research examines how the curriculum needs to be designed to support families in data modeling, foster engagement in data modeling by both younger (ages 5-6) and older (ages 7-8) children, and provide evidence of active approaches to learning about STEM. The design and development project tests and investigates the materials using a design-based research framework. Children who participate in the workshop series should increase their confidence in solving problems, taking initiative, and drawing on available resources to pursue their own questions and respond to novel challenges. Data collected includes interviews with participants, artifacts of children's work throughout the series, and an observational instrument to document families' problem solving, persistence, and engagement with data science concepts.
Front-line staff are an integral part of the visitor experience at museums and science centers across the country, facilitating activities and programs, leading classes, and more. But do these staff make a difference for visitor learning? And what are the most effective facilitation strategies and approaches? In 2013, the Oregon Museum of Science and Industry (OMSI) received funding from the National Science Foundation for a three-year study, Researching the Value of Educator Actions for Learning (REVEAL), to begin to address these questions. Building on the Design Zone exhibition, REVEAL
The Bay Area Regional Collaboration to Expand and Strengthen STEM (RECESS) is a regional, unified STEM continuum effort from preschool through graduate school and career. RECESS is based on successful collective impact efforts in other fields and employs a participatory action research (PAR) approach to broaden participation in STEM. In the PAR framework, youth and their families will help to define the issues and develop expertise about community needs through a shared research process.
RECESS introduces participatory action research as an innovative element to the collective impact social agency framework. The intent is to determine the extent to which the engagement and involvement of the students and communities targeted can effectively shape the function of the collective impact network of organizations.
During the two year planning phase, RECESS (a) conducts a comprehensive needs assessment and gap analysis; (b) establishes a functioning organization of stakeholders with a common agenda and governance model; and (c) develops a detailed action plan. It is a significant contribution to the body of knowledge on effective and innovative collective impact structures designed to promote STEM education and participation.
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.
To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.
The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The REVEAL project is an NSF funded project to learn about how facilitation impacts family’s experiences of math exhibits. The goal of the project was to iteratively develop and refine a theoretical model of how staff facilitation deepens and extends family mathematical discourse at interactive exhibits. This model underwent rigorous testing and ultimately provided the evidence and research-based tools to support PD efforts for informal STEM educators. As part of this testing the learnings from developing at OMSI (Oregon Museum of Science and Industry, in Portland, Oregon) were applied in an
Head Start on Engineering (HSE) is a collaborative, NSF-funded research and practice project designed to develop and refine a theoretical model of early childhood, engineering-related interest development. The project focuses on Head Start families with four-year-old children from low-income communities and is being carried out collaboratively by researchers, science center educators, and a regional Head Start program. In this paper, we outline a preliminary conceptual framework for describing early childhood STEM interest development, which will be used to guide data collection and program
This report summarizes findings from a research-practice partnership investigating STEM-rich making in afterschool programs serving young people from communities historically under-represented in STEM. The three-year study identified key dimensions related to (1) How STEM-Rich Making advances afterschool programmatic goals related to socio-emotional and intellectual growth for youth; (2) Key characteristics of programs that effectively engage youth historically marginalized in STEM fields; and (3) Staff development needs to support equity-oriented STEM-Rich Making programs.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project will provide much needed empirical results on how to promote children’s STEM engagement and learning in informal science education settings. The project will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Using a combination of Peg + Cat, an animated math-based PBS television series for preschoolers; professional development (PD); family engagement resources; and the existing infrastructure of a regional Head Start system, this project aims to increase participating educators’ and families’ comfort and engagement with mathematics.