"Making and Tinkering" links science, technology, engineering and mathematics learning (STEM) to the do-it-yourself "maker" movement, where people of all ages "create and share things in both the digital and physical world" (Resnick & Rosenbaum, 2013). This paper examines designing what Resnick and Rosenbaum (2013) call "contexts for tinkerability" within the social design experiment of El Pueblo Mágico (EPM) -- a design approach organized around a cultural historical view of learning and development. We argue that this theoretical perspective reorganizes normative approaches to STEM education
DATE:
TEAM MEMBERS:
Lisa SchwartzDaniela DigiacomoKris Gutierrez
Using their imagination and creativity, inventors have made significant contributions to our world throughout the course of human history. In recent times, a growing community has responded to the need for more intensive research on Invention Education and within the last several years has begun organizing itself around collaborative action that will accelerate the uptake and practice of Invention Education. The purpose of this document is to provide a comprehensive community-driven framework and set of principles for Invention Education that can support its growth within formal and informal
The Researching Invention Education white paper compiles contributions from a community of individuals and organizations working in Invention Education (IvE) in the United States. IvE is a term that refers to the practice of teaching students how to problem-solve and think like inventors in order to become positive change-makers in the world. The paper was written by researchers interested in IvE who attended the 2018 InventEd convening hosted by The Lemelson Foundation. The group worked together for a year to publish their findings that were then uncovered at the 2019 InventEd convening in
DATE:
TEAM MEMBERS:
Audra SkukauskaiteStephanie CouchLeslie Flynn
To better understand STEM interest development during adolescence in an urban community, we examined how “STEM Interested” youth differed from disinterested youth and how interest changed over time from age 11/12 to 12/13. We surveyed youth to measure interest in four components of STEM, used cluster analysis to categorize youth based on STEM interest, and examined how interest profiles and pathways differed for several explanatory factors (e.g., parental support, gender). Three STEM interest profiles emerged from the analysis: Stem Interested, Math Disinterested, and STEM Disinterested. Only
In this paper, we examine the relationship between participants’ childhood science, technology, engineering, and mathematics (STEM) related experiences, their STEM identity (i.e., seeing oneself as a STEM person), and their college career intentions. Whereas some evidence supports the importance of childhood (i.e., K‐4) informal STEM education experiences, like participating in science camps, existing research does not adequately address their relationship to STEM career intention later in life. Grounding our work in identity research, we tested the predictive power of STEM identity on career
Drawing on results from a recent national study, we draw attention to the importance of the experiential learning cycle for enhancing meaningful outcomes of interpretive and educational experiences. The experiential learning cycle involves participating in a concrete experience, reflecting on that experience, drawing out lessons learned and principles from that reflection, and putting that knowledge to work in a new situation. Recent studies reveal that attention to completing all four stages of the experiential learning cycle can enhance positive outcomes for participants in educational and
Poster presentation from the 2020 Association of Science and Technology Centers Annual Conference.
This poster presented preliminary findings from a configurative literature synthesis on how the literature posted on the InformalScience.org website, in peer-reviewed journals, and in the ProQuest archive of Theses and Dissertations report about how informal learning institutions are advancing the use of STEM knowledge and scientific reasoning in the ways that can help individuals and communities address the societal challenges of our time?
Knowing how specific publics understand and experience science is crucial for both researchers and practitioners. As learning and meaning-making develop over time, depending on a combination of factors, creative possibilities to analyze those processes are needed to improve evaluation of science communication practices. We examine how first grade children's drawings expressed their perceptions of the Sun and explore their views of a major astronomical body within their social, cultural and personal worlds. We then examine how the observation of the Sun through a telescope led to changes in
DATE:
TEAM MEMBERS:
Sara AnjosAlexandre AibéoAnabela Carvalho
In this paper, we contend that what to teach about scientific reasoning has been bedeviled by a lack of clarity about the construct. Drawing on the insights emerging from a cognitive history of science, we argue for a conception of scientific reasoning based on six 'styles of scientific reasoning.' Each 'style' requires its own specific ontological and procedural entities, and invokes its own epistemic values and constructs. Consequently, learning science requires the development of not just content knowledge but, in addition, procedural knowledge, and epistemic knowledge. Previous attempts to
A year into the COVID-19 pandemic, the world continues to struggle with the many ways our lives have changed and the uncertainty that remains about the future. Vaccines are being widely administered, but how and when life will return to “normal” remains unknown. During this time, caregivers continue to seek out information to address the questions, worries, and information needs their children have about this unique moment in their lives. Our NSF-funded RAPID research project has helped to uncover some of these questions, worries, and needs by talking to caregivers of listeners of the children
This poster describes the Addressing Societal Challenges through STEM (ASCS) project. The project's research goal is to identify and describe the range of ways that informal STEM learning (ISL) institutions are addressing societal challenges and how STEM knowledge and scientific reasoning are situated in that engagement.
The poster was presented at the American Association of Museums (AAM) 2020 Virtual Conference.
Peg + Cat is a popular broadcast television series, developed by The Fred Rogers Company and airing on PBS, in which a girl named Peg and her sidekick, Cat, solve everyday problems using mathematics, creativity, persistence, and humor. Peg + Cat: Developing Preschoolers’ Early Math Skills was a three-year project, funded by the National Science Foundation, that aimed to impact children’s interest and engagement with mathematics, as well as their development of positive social-emotional skills. The project supported early math learning via the creation of additional Peg + Cat episodes, online