Imagine two seventh-grade students from communities of color and low socioeconomic backgrounds, of whom at least one is an English-language learner1 (ELL). Both are likely disenfranchised from avenues to success and the ability to see themselves as capable of great things. These students attend school in the largest school districts in Colorado. As part of their seventh-grade science class, they participate in a program called Urban Advantage Metro Denver (UA Denver), which provides them the opportunity to work on a self-selected science project. Their projects are inspired by field trips to
The Exhibit Designs for Girls’ Engagement (EDGE) project is a three-year Exploratorium-run, NSF-funded, research study aiming to identify the most important design attributes for engaging girls at STEM exhibits. We identified nearly 100 exhibit design attributes that had the potential for better engaging girls. To test those 100 attributes and their relationship to girls’ engagement, we studied more than 300 physics, engineering, math, and perception exhibits at the Exploratorium, the Science Museum of Minnesota, and the Arizona Science Center. The purpose of the EDGE research was to winnow
“The activity where we collected organisms was a good influence ’cause I could see myself as a scientist. I got to do the actual thing.” These words from Celeste, a girl who participated in the Coastal Ecology program at the Chincoteague Bay Field Station on the Eastern Shore of Virginia, are not unique. Other girls who participated in the program offered similar input, suggesting that engaging in science in this out-of-school time (OST) setting enhanced their identity and sense of self as learners of science. OST programs like the Coastal Ecology science camp can positively influence science
Commonly described as youth-led or youth-driven, the youth-adult partnership (Y-AP) model has gained increasing popularity in out-of-school time (OST) programs in the past two decades (Larson, Walker, & Pearce, 2005; Zeldin, Christens, & Powers, 2013). The Y-AP model is defined as “the practice of (a) multiple youth and multiple adults deliberating and acting together (b) in a collective (democratic) fashion (c) over a sustained period of time (d) through shared work (e) intended to promote social justice, strengthen an organization and/or affirmatively address a community issue” (Zeldin et al
DATE:
TEAM MEMBERS:
Heng-Chieh Jamie WuMariah KornbluhJohn WeissLori Roddy
Young adulthood, typically defined as between the ages of 18 and 25, is a critical period of growth during which young people acquire the education and training that serve as the basis for their later occupations and income (Arnett, 2000). The successful transition from adolescence to early adulthood requires youth to have the skills and resources to graduate high school and then go to college or enter the workforce (Fuligni & Hardway, 2004; Lippman, Atienza, Rivers, & Keith, 2008). To accomplish these tasks in advanced urban societies, young adults need a wide range of social, cognitive
One day, as I was working with a student after school on a problem involving division with decimals, I told him which number goes in the “division house.” Suddenly the student blurted out, “That is not what my teacher told me, and I hate math!” I knew I had not yet found the key to helping this student. Was I addressing how he felt about math? Should I put the problem away and start over with the beauty of decimals, those smaller-than-one numbers that enable us to measure the speed of an Olympic athlete, the diameter of a pinhead, or the exact length of a ladybug? Teaching afterschool allows
The U.S. government’s Physical Activity Guidelines for Americans suggest that children should engage in moderate to vigorous physical activity for 60 minutes per day (U.S. Department of Health and Human Services [U.S. DHHS], 2008). However, recent data indicate that children in the U.S. are not accumulating enough physical activity (Centers for Disease Control and Prevention, 2014). The concern is deepest for youth of lower socioeconomic status and youth of color (Moore, Davis, Baxter, Lewis, & Yin, 2008; Singh, Kogan, Siahpush, & van Dyck, 2008). As a result, professionals in a variety of
DATE:
TEAM MEMBERS:
Heather ErwinStephanie RoseSarah SmallJay Perman
Over the last decade, the National Geographic Society (NGS) has been developing and supporting FieldScope, a web-based science information portal. Through an interactive mapping platform, citizen scientists have access to a wide range of tools that enable them to document and understand the world around them. By 2008, two major citizen science projects were using FieldScope, but the range of tools and the flexibility of projects were limited. NGS sought additional funding to expand the capabilities of FieldScope.
In September 2010, NGS received a award from the National Science Foundation
Today institutional and project leaders are faced with two critical dilemmas: (1) building the capacity to respond to the increasing evaluation and accountability demands of funders and stakeholders; and (2) managing the complexities of interconnected, multifaceted, ongoing institutional and cross-institutional work. These challenges require leaders to go beyond traditional approaches to professional development and consider the complex ways that systems of professionals communicate, interact, and evolve. This report draws from three years of research as part of the National Science Foundation
This document contains the appendices and literature review from the report "Art+Science: Broadening Youth Participation in STEM Learning." It includes assessment tools used during the project.
Art and science represent two powerful human ways of investigating and understanding the natural and social world. Both are creative processes involving acts of observation, interpretation, meaning-making, and the communication of new insights. While standards of evidence may vary between the two fields, there are also many common practices. Many artists, for example, employ a range of computational, digital and engineering practices. Many scientists are guided in part by aesthetic considerations in the formulation of questions, theories, and models. In this report we share the results of a
This chapter reviews four projects that reflect the principles of design-based implementation research (DBIR) in an effort to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with DBIR.The goal of this chapter is to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with design-based implementation research (DBIR). As Penuel, Fishman, Cheng, and Sabelli (2011) described, DBIR entails engaging “learning scientists, policy researchers, and
DATE:
TEAM MEMBERS:
Jennifer RussellKara JacksonAndrew KrummKenneth Frank