This book is a deliverable (requisite) of an NSF (National Science Foundation) grant to share the project outcomes and what we learned from the NSF grant project. This four-year NSF project was funded to provide professional development to museum educators about Indigenous Knowledge and Western Science in museums, with the goal of providing a culturally relevant way for Indigenous communities to connect to science. The name of this grant was “Cosmic Serpent: Bridging Native Ways of Knowing and Western Science in Museum Settings.”
This book is also a snapshot in time of this work in
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
resourceprojectProfessional Development, Conferences, and Networks
EvaluATE is a national resource center dedicated to supporting and improving the evaluation practices of approximately 250 ATE grantees across the country. EvaluATE conducts webinars and workshops, publishes a quarterly newsletter, maintains a website with a digital resource library, develops materials to guide evaluation work, and conducts an annual survey of ATE grantees. EvaluATE's mission is to promote the goals of the ATE program by partnering with projects and centers to strengthen the program's evaluation knowledge base, expand the use of exemplary evaluation practices, and support the continuous improvement of technician education throughout the nation. EvaluATE's goals associated with this proposal are to: (1) Ensure that all ATE Principal Investigators and evaluators know the essential elements of a credible and useful evaluation; (2) Maintain a comprehensive collection of online resources for ATE evaluation; (3) Strengthen and expand the network of ATE evaluation stakeholders; and (4) Gather, synthesize, and disseminate data about the ATE program activities to advance knowledge about ATE/technician education. The Center plans to produce a comprehensive set of evaluation resources to complement other services, engaging several community college-based Principal Investigators and evaluators in that process.
EvaluATE's products are informed by current research on evaluation, the National Science Foundation's priorities for the evaluation of ATE grants, and the needs of ATE PIs and evaluators for sound guidance that is immediately relevant and usable in their contexts. The fundamental nature of EvaluATE's work is geared toward supporting ATE grantees to use evaluation regularly to improve their work and demonstrate their impacts. All of EvaluATE's products are available to the public. EvaluATE's findings from the annual survey of ATE grantees aid in advancing understanding of the status of technician education and illuminate areas for additional research. The new survey investigates ATE grantees' work to serve underrepresented and special populations, including women, people of color, and veterans. Survey data are available upon request for research and evaluation purposes.
DATE:
-
TEAM MEMBERS:
Lori WingateArlen GullicksonEmma PerkKelly RobertsonLyssa Becho
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
Astronomy from the Ground Up (AFGU) was a five year project directed by the Astronomical Society of the Pacific (ASP) and funded by the NSF Informal Science Education (ISE) division (DRL- 0451933). The primary partner institutions were the National Optical AstronomyObservatory (NOAO) and the Association of Science-Technology Centers (ASTC). Between 2006 and 2008, the AFGU project hosted 6 onsite and 6 online workshops. The project provided professional development for informal science educators in the area of astronomy educational
programming. The project’s primary goal was to encourage more
The Complex Adaptive Systems as a Model for Network Evaluations (CASNET) study was a four-year research project investigating evaluation capacity building (ECB) within a network using a complexity theory lens. The study used a case study approach to examine and understand evaluation capacity building within the Nanoscale Informal Science Education Network (NISE Net). NISE Net is a national community of researchers and informal science educators dedicated to fostering public awareness, engagement, and understanding of nanoscale science, engineering, and technology. Instituted in 2005 through NSF funding (DRL-0532536 and 0940143), NISE Net has continuously expanded and is currently comprised of close to 600 science museum and university partners. The intent of the CASNET project was to provide insights on (1) the implications of complexity theory for promoting widespread and systemic use of evaluation within a network, and (2) complex system conditions that foster or impede ECB within a network, i.e., in this case, within the NISE Net.
The Wildlife Conservation Society and Good Shepherd Services (a youth development and education agency) are implementing and evaluating a school-to-career model program that consists of afterschool and weekend programming for high school students at four New York City area zoos and an aquarium, followed by post-participation tracking, support, and mentoring. The goal is to promote affective, cognitive and behavioral outcomes among 150 low-income minority youth necessary to pursue careers in the wildlife sciences.
The Bridging the Gap project is (1) developing a science career program that includes hands-on, technology-enriched, science learning experiences at zoos/aquaria; career building services, mentoring, and long-term tracking and support, (2) forming a community of minority students who have the knowledge and skills to pursue wildlife careers, (3) generating research findings on the short-term and long-term effectiveness of the program, and (4) disseminating information about the project's resources and findings to other informal science education institutions around the nation for replication. The evaluation plan measures a variety of outputs, outcomes and impacts that include short-term and long-term cognitive and affective variables. Data collection methods include student activity monitoring and pre-post testing.
The project addresses a compelling personnel issue documented by the American Zoo and Aquarium Association - the small number of minority science professionals working in zoos and aquariums. Because few programs currently exist to help minority students enter the wildlife science professions, this project fills an important programmatic need and serves as a model workforce program that can be replicated by other informal science education organizations around the country. The project's key strategic impact is its capacity to broaden participation in the wildlife sciences by expanding the science professional pipeline beginning in high school.
DATE:
-
TEAM MEMBERS:
Karen TingleyChanda BennettDon LisowyBrian JohnsonEmily StoethCourtney Wiggins
resourceevaluationProfessional Development, Conferences, and Networks
The following QuarkNet evaluation data were collected between September 2011 and September 2012. Questions from an Evaluation Matrix developed by QuarkNet program director and NSF program director are addressed, preceded by a summary of data collection and analysis. This is the fourth year using the Matrix. Collection strategies were updated based on findings from last year and included in this year’s evaluation
section. This is the last annual report under the 2008-2012 grant from The National Science Foundation (NSF) and the Department of Energy (DOE).
This project will be conducted by a team of investigators from North Carolina State University. The principal investigator proposes to examine the characteristics, motivations, in and out-of-school experiences, informal science activities, and career trajectories of 1000 science hobbyists and "master hobbyists." Master hobbyists are individuals who have developed science expertise and spend considerable free time engaging in science as a leisure activity. Master science hobbyists are found across most areas of science (e.g. birdwatchers, amateur astronomers). This research will determine who these individuals are, their career pathways, how they engage in science activities and what motivates, sustains, and defines their science interests. One of the particular goals of this research is to develop new understandings of how science hobby interests develop for women and underserved minorities. In the proposed research investigators will use the results of interviews and surveys to identify contextual factors that influence the motivational processes that, in turn, influenced choices of careers and contribute to ongoing choices in hobby and citizen science activities. Of interest in this study is how citizen scientists who are also serious hobbyists differ from master science hobbyists. Research on citizen scientists has shown that this group is highly motivated by collective motives (such as a desire to help others and further science), whereas this may not be the case with the master science hobbyist. Two groups will be sampled: a) birdwatchers and b) amateur astronomers. This sampling model will allow investigators to contrast their findings by: 1) those who have selected a science career versus those that did not select a science career, 2) those who participate in citizen science activities and those that do not, and 3) those who are birdwatchers (greater mathematical components) and those who are amateur astronomers (lesser mathematical components). Additional coding and analyses will examine any differences in the evolution of bird watching and astronomy hobbies. The results of this research will be examined in light of existing motivational and sociocultural models of career selection. This research will document differences in the perceived motivational elements that influenced master science hobbyists/citizen scientists to choose a science career or not. The results can inform federal, state, and local policies for supporting youth and adults engaged in free choice learning. Results of this research will inform the design of intervention/recruitment programs and ISE outreach initiatives. Potential audiences include ISE institutions (e.g. museums and science centers), organizations with links to STEM (e.g. scouts, boys/girls clubs) and pre- and college initiatives that seek to influence career choices and life-long science interests. The proposed cross-disciplinary approach will promote new understandings of complex issues related to motivation, retention, career selection, leisure activities, engagement with formal and informal educational environments, gender and ethnicity, communities of practice and changes in interests over time. Members of the advisory board have expertise in assessment and measurement and will work closely with the project team to conduct a detailed examination of methodologies and analyses at all phases of the project.
DATE:
-
TEAM MEMBERS:
Melissa JonesThomas Andre
resourceprojectProfessional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE), a cooperative agreement with the National Science Foundation Advancing Informal STEM Learning (AISL) program, is a partnership of the Association of Science-Technology Centers with faculty and professionals from the University of Pittsburgh Center for Learning in Out-of-School Environments (UPCLOSE), Oregon State University (OSU), the Great Lakes Science Center, KQED Public Media, advisors and other collaborators. CAISE works to support and resource ongoing improvement of, and NSF investments in, the national infrastructure for informal Science Technology Engineering and Mathematics (STEM) education. CAISE's roles are to build capacity and support continued professionalization for the field by fostering a community that bridges the many varied forms in which informal STEM learning experiences are developed and delivered for learners of all ages. To that end, CAISE activities also include: creating field-driven evidence databases about the impacts of informal STEM education; facilitating federated searches of those databases; furthering dialogue and knowledge transfer between learning research and practice; working to enhance the quality and diversity of evaluation knowledge and processes; and helping STEM researchers improve their efforts in informal STEM education, outreach and communication. For Principal Investigators (PIs) and potential PIs, CAISE provides resources that can assist in the development of evidence-based proposals. It also facilitates and strengthens networks through PI meetings, communications, and other methods that encourage sharing of deliverables, practices, outcomes and findings across projects. For the AISL Program at NSF, CAISE is assisting program officers in understanding the portfolio of awards, identifying the portfolio's impacts in key areas, and integrating the program's investments in education infrastructure.
The Space Science Institute is developing an astronomy educational social game for the Facebook platform. The game uses the "sporadic play" model popular with many Facebook games, in which players take only a few actions at a time, then return to explore the results. Here players will create their own stars and planetary systems that evolve over time at a rate of a million years a minute. Players set systems in motion, revisiting the game over days or weeks to make new choices and alter strategies. The game is in effect an end-to-end solar system simulation, following a star from birth to death. As a result it encompasses a wide variety of core concepts in astronomy, including galactic structure, stellar evolution and lifecycles, planetary formation and evolution, and habitability and "habitable zones." The accompanying research program will examine the effectiveness of this type of game in informal education, and the effects of the social network on meeting the education goals, including viral spread, cooperative play, and discussions about the game and its underlying content in associated online forums.