The Aldrich Contemporary Art Museum will amplify its partnership with Hart Magnet School, a Title 1 elementary school in urban Stamford, Connecticut, by increasing exposure and access to the arts for first-fifth graders, their families, and educators. A new program model, leveraging the museum's artist exhibitions, will focus on technology and an inquiry-based approach to science. Students, educators, and families will be encouraged to see and think in new ways through on-site STEAM tours at the museum, artist-led workshops at Hart, teacher professional development, and afterschool family activities. Outside evaluators will work with the project team to develop goals and associated metrics to measure how the model of museum-school partnership can enhance student achievement, engage families more deeply in their child's school experience and community, and contribute to teacher professional development. The evaluator will also train museum staff on best practices for program assessment.
The Bay Area Discovery Museum will address the need for STEM education by delivering engineering outreach programming to schools and libraries throughout the San Francisco Bay Area. The museum's mobile engineering lab, Try It Truck, will introduce the engineering design process to students and teachers in grades K-5 with hands-on activities (both on and off the truck) where they can collaborate, experiment, and design solutions to engineering challenges. The Try It Truck will serve 21,600 children, parents, and educators throughout the Bay Area, with at least 50 percent of all participants coming from underserved communities and Title I schools. The museum will work with an external evaluator to design survey instruments for both formative and summative evaluation, analyze summative evaluation data, and produce a report. Museum staff will share project results with colleagues at national and statewide conferences.
The Children's Museum of the Upstate will expand its STEAM outreach programming to benefit both teachers and students in the Greenville County Schools. The museum will serve 2,000 students through STEAM programs held on-site at their elementary schools, with a focus on curriculum areas where standardized test scores indicate that students are struggling. A new program for preschoolers will be piloted in the school district's six child development centers. The pre-school classes will visit the museum for a field trip that includes free exploration time and a tailored storytime lesson. The museum will also present four teacher workshops reaching 400 educators to assist them in teaching STEAM topics. An independent evaluator will conduct an evaluation of the outreach programming and develop assessment tools to help determine how the curriculum can support student achievement and result in improved standardized test scores.
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
Presentation slides and narration for the NARST 2022 Annual Conference. In this presentation we summarize findings from our interviewed with undergraduate STEM majors who identify as Latine, homing in on the ways in which they characterize "STEM" and "STEM people" and their descriptions of K-12 experiences that contributed to their characterizations of these concepts.
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:
EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.
This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.
In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As an emerging field of theory, research, and practice, STEAM (Science, Technology, Engineering, Arts and Mathematics) has received attention for its efforts to incorporate the arts into the rubric of STEM learning. In particular, many informal educators have embraced it as an inclusive and authentic approach to engaging young people with STEM. Yet, as with many nascent fields, the conceptualization and usage of STEAM is somewhat ambivalent and weakly theorized. On the one hand, STEAM offers significant promise through its focus on multiple ways of knowing and new pathways to equitable
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
In this article we explore how activity design and learning contexts can influence youth failure mindsets through a case study of five youth who described failure as sometimes a good thing and sometimes a bad thing (a perspective we characterize as Failure as Mosaic, described in the article). These youth and their descriptions of failure-positive and failure-negative experiences offer a unique opportunity to identify how experiences can be designed to support learning and persistence. In order to understand differing views of failure among youth, we researched the following questions:
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.
This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.
This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Future educational robots are emerging as social companions supporting learning. By socially interacting with such a robot, learners can potentially reason and talk about the things they are learning and receive help in seeing the relevance of STEM in their daily lives. However, little is known about how to design educational robots to work with youth at home over a long period of time. This project will develop an informal science learning program, called STEMMates, in collaboration with a local community center, for youth with little interest in science. The program will partner learners with an in-home learning companion robot, designed to read books with youth and provide science activities for them at the community center, where youth will engage in exciting and personally relevant science learning. As the learner reads books, the robot will make comments about what is happening in the book to help connect the reading to the science activities at the community center. The overarching goals of STEMMates are to: (a) positively support youth's individual interest in science and future science learning, (b) connect in-home learning experiences with out-of-school community-based learning, (c) bridge the gap between formal and informal engagement and learning in science, and (d) encourage the participation of youth who are underrepresented and who have low interest in STEM learning. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments.
Researchers will work with youth and staff at the community center, alongside experts in informal science learning, to design the program and then test how learners respond to reading with the robot and participating in the science activities and whether this program has a lasting impact on their science interest. Social interactions with a robot may help distribute cognitive load during learning activities to help youth reason about STEM and also supplement learning by improving feelings of value and belongingness in order to facilitate lasting interest development. Following a mixed-methods research approach using qualitative and quantitative data-collection techniques, the research team will investigate the following research questions: (1) What social and interest-development supports and activities can be utilized as socially situated interest scaffolds in an informal and in-home, augmented reading and science activity program to promote individual interest and learning in science for low interest learners? How can a social robot best facilitate this program? (2) How do learners perceive and interact with the robot in authentic, in-home, long-term situations, and how does this interaction change over time? (3) Does working with a robot designed with socially situated interest scaffolds increase individual interest in science when compared to a pre-intervention baseline, and do these effects impact future (long-term) interest and engagement in formal science learning? To answer these research questions, researchers will implement the science learning program during an 11-week summer deployment and utilize an AB single-case research design. Interview-based qualitative data and self-report surveys to examine the learner?s perception of the robot and their evolving interest in science and quantitative data on science learning using pre-/post-measure comparisons will be collected. Log data of time-on-task, reading rate, book selection and reading goal attainment will also be collected by the robot. The outcomes of this project will lay the groundwork for future investigations of the design of social robots for a diversity of learner populations and their use in different informal learning settings.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The PEAR Institute: Partnerships in Education and Resilience at McLean Hospital and Harvard Medical School conducted a year-long study of the Tulsa Regional STEM Alliance (TRSA). Funded by the Overdeck Family Foundation, STEM Next Opportunity Fund, and the Charles and Lynn Schusterman Family Foundation, this study is the first of its kind among 68 national and international STEM Ecosystems.
DATE:
TEAM MEMBERS:
Kristin Lewis-WarnerPatricia AllenGil Noam