The role of afterschool programs in the science, technology, engineering, and mathematics (STEM) learning ecosystem has grown over the past two decades, which has led to increasing efforts to support and improve program quality. These efforts include developing STEM programs and curricula, creating standards for facilitating informal STEM learning experiences, building networks of support, and developing tools for assessment and evaluation. However, such efforts may have limited impact in terms of ongoing quality improvement. STEM curricula vary in disciplinary focus, quality and may not apply to local contexts and needs. Many afterschool programs resort to using simple STEM kits or online activities rather than rigorous curricula with support for educators. The project will study how the California Department of Education's (CDE) efforts to change organizational culture to support continuous quality improvement (CQI) have affected the offerings and quality of afterschool STEM in the state's more than 4,500 publicly funded afterschool sites. The EPISTEMIC project will contribute new research findings on how CQI can increase access to higher quality STEM learning opportunities for underserved youth. Even more important, the project will provide new insights on how organizational culture affects participation in and implementation of afterschool CQI.
The team will use an organizational theory framework and a mixed methods approach to conduct three research activities: (1) Describe the organizational context through interviews, participant observations, and artifact analysis to map and describe the overall support system as a context for understanding organizational culture change; (2) Describe change over time in organizational culture, CQI processes, and STEM program offerings and quality through surveys/interviews of afterschool youth, staff, directors, and grantee representatives; and (3) Generate explanations about the relationships between organizational culture, CQI, and STEM quality in different contexts through in depth case studies. Bringing organizational culture, CQI, and STEM offerings and quality into shared focus is the most important intellectual contribution of this work. Organizational theory's sensemaking concept will guide analyses to describe, exemplify, and generate theoretical explanations for patterns in organizational culture, CQI, and STEM program changes, with attention to relevant contextual factors.
Continuous quality improvement provides tools for afterschool STEM staff to identify needs and ways to improve. The EPISTEMIC study will contribute recommendations on the systemic, organizational, and cultural aspects of improvement strategies relevant to policymakers, funders, support providers, and afterschool organizations in California, as well as other state or nongovernmental support systems around the country. The study will also produce CQI guidelines for reflecting on and incorporating changes to organizational culture as part of CQI for afterschool staff and site directors. These will be helpful for practitioners around the country. The study's focus on three organizational contexts -- school district, national afterschool, and local afterschool -- will extend the relevance of the findings and recommendations, which will be disseminated through forums, workshops, and articles in practice and policy-oriented publications. The study will also benefit the research community by providing a framework and methods for studying organizational culture and CQI. The findings on the relationships between organizational culture, CQI, and STEM offerings and outcomes will provide a foundation for further research on how these relate to STEM learning outcomes for youth. EPISTEMIC is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Patrik LundhAndrea BeesleyTimothy PodkulCarrie Allen
resourceprojectProfessional Development, Conferences, and Networks
This project will consider how research on imaginative thinking, and perspectives on the role of imagination in STEM practice and STEM education, can be systematically applied to support STEM learning in museum contexts. Common conceptions of science as non-imaginative are persistent, but scholarship across disciplines suggests critical roles for imagination, both in the practice of STEM and in shaping learners' perceptions of themselves as part of STEM. Further, evidence from the fields of neuroscience, psychology, child development and education suggests ways that imagination can be fostered and improved, and that these understandings could be applied to the design of museum experiences in order to improve STEM outcomes.
The activities of this project, led by the Museum of Science, Boston, both synthesize and generate knowledge at the intersections of imagination, STEM, and education practice in ways that are actionable for museum professionals. Activities include: a literature review, a document review, and a survey of ISE professionals; an in-person convening of STEM professionals (researchers, practitioners, educators and others); and the development and dissemination of products designed to inform future project development. The goals of the project are to: 1) prompt conversations about imaginative thinking across the Informal Science Education (ISE) field, and between ISE and other fields; 2) identify priority areas for research and development that can advance the field's understandings at the intersections of imagination, STEM, and learning; and 3) catalyze future research and development efforts that can advance the field. The intent is for the integration scholarship on imagination, STEM, and learning within museums' research and development efforts to lead to projects that describe, test, and refine theoretical frameworks and concrete strategies for supporting imaginative thinking among public audiences through exhibitions, programs, and other designed experiences.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This project responds to the Faculty Early Career Development Program (CAREER) solicitation (NSF 17-537) and is sponsored by the Advancing Informal STEM Learning program at the National Science Foundation. CAREER: Talking Science: Early STEM Identity Formation Through Everyday Science Talk (Talking Science) addresses the critical issue of the development of children's identification with science, technology, engineering and mathematics (STEM) fields and the limited knowledge about the development of STEM identity through conversations, particularly among very young children from underserved and underrepresented populations. Talking Science is based on the premise that individuals who develop STEM interests and identify with STEM at a young age tend to participate in STEM fields more so than individuals who develop these later in life. This study investigates how STEM-related conversations outside of school with friends and family during formative years (i.e., 7 - 12 years old) shape youths’ STEM identity later in life and their engagement in STEM. The goals of Talking Science are (1) To develop an understanding of the features and context of conversations held between children and their caregivers/teachers that support STEM identity development in both majority and Hispanic/Latine populations; and (2) To translate the research outcomes into informal STEM learning practices that positively contribute to young people's perceptions of STEM fields in their future.
To achieve its goals, this work addresses the following research questions: (1) What is the content, context, and structure of STEM-related conversations with friends and family that youth ages 7 - 12 participate in?; (2) How do the features of conversation (i.e., content, context, structure) relate to the development of youth's STEM interests, sense of recognition as STEM people, and self-identification with STEM?; (3) How do the cultural values and science talk experiences of Hispanic/Latine youth shape conversation features related to youth's STEM interests, sense of recognition as STEM people, and self-identification with STEM?; and (4) Does professional development for practitioners that focuses on encouraging youth to engage in STEM-related conversations with friends and family positively contribute to youth's STEM interest, sense of recognition, and self-identification with STEM? To address these questions, the study adopts a qualitative research approach that applies phenomenological strategies in research design, data collection, and analysis to allow for exploration of the meaning of lived experiences in social and cultural contexts. Participants include elementary-age youths (ages 7 - 12) and caregivers from socially, culturally, linguistically, and economically diverse backgrounds. To inform the development of interview protocols in terms of the kinds of childhood talk that leave a long-term impact on students, including the kinds of talk experiences remembered by students who choose or persist towards a STEM career in college, the project also recruits college students pursuing STEM degrees as participants. Data gathering and interpretation strategies include surveys and interviews. The outcomes of this research will constitute a theoretical framework and models that guide the development of both professionals and programmatic activities at informal learning institutions, particularly around scaffolding participation in STEM through family science talk.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.
The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Addressing Societal Challenges through STEM (ASCs) received NSF AISL funding to conduct a Literature Review and Synthesis to answer the question: How are informal learning institutions advancing the use of STEM knowledge and scientific reasoning in the ways that individuals, families, and communities understand what they can do, and apply their learning to solving the societal challenges of our time? Using a definition of societal challenges based on research around the public understanding of social problems, this systematic literature review will identify, analyze, and synthesize three bodies of peer and field-reviewed literature (peer-reviewed journals, graduate theses, and evaluation reports of nationally-funded project).
Over the past decade, Informal STEM learning organizations have increasingly engaged in innovative ways to present STEM knowledge within the context of societal challenges such as climate change, energy sources, cyber-security, Nanotechnologies, coastal resilience, and other topics. These efforts significantly expand the traditional work of Informal STEM Learning (ISL) organizations, often leading to new types of interventions, partnerships, impacts, and assessment tools. Analyzing and interpreting the aggregate of this work will advance theoretical and practical knowledge about the potential of ISL’s in advancing the place of STEM in addressing societal challenges.
Demonstrating and articulating the characteristics of how ISL organizations are addressing societal challenges, encourages and informs the ways institutions can address the NSF strategic goal to “Advance the capability of the Nation to meet current and future challenges.” The project outputs aim to Enhance Knowledge-building, Build Capacity of the Field, and Maximize Strategic Impact by informing the strategies used by organizations and individuals. The results also aim to Broaden Participation by articulating the ways STEM knowledge is embedded and linked to personal experiences and choices.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will explore how understanding visitors' experiences with science museum exhibits may contribute to increasing engagement among diverse audiences. Museums have made great strides in understanding how exhibit design can support underrepresented audiences, but often tend to focus on individual demographic groups such as females, certain racial and ethnic minorities, and people with disabilities. This project will explore relationships between visitors' demographic and science identities to assess the affordances of using science identity as an intersectional proxy that could help the field move beyond its reliance on demographics. Building on prior National Science-funded work about museum engagement, the project applies appraisal theory--a psychological model about how people make conscious and subconscious assessments of situations that manifest in emotions--to the informal learning context. To date, museums have tended to focus on cognitive and behavioral aspects of engagement. Appraisal theory can add emotional processes to the conceptual understanding of engagement, and can be applied to help exhibit professionals develop a design framework that upholds complex identities. Such a framework could have implications for inclusive design of learning experiences in museums, schools, and other educational contexts.
This Pilot and Feasibility Study will address methodological and theoretical questions about the feasibility of a research approach that considers the relationships among: 1) exhibit design features; 2) multiple identity factors including science identity, demographics, and self-defined personal identity; 3) visitor appraisals; and 4) engagement with exhibits. Led by researchers at the Museum of Science, Boston and EdTogether, a non-profit research and development organization for inclusive design, the project will begin with a pre-piloting phase during which researchers will work with youth and professional advisors from local community organizations to test a suite of data collection approaches including self-report in the form of questionnaires and interviews; observations of visitor engagement; and biometric data collection including galvanic skin response and eye tracking. Building from this pre-piloting phase, the team will conduct four mini-studies that will iteratively refine measures towards enhanced validity and parsimony while gathering data to test the investigators' hypothesized model of design, identity, appraisal, and engagement. The evidence from testing this model through the four mini-studies will lay the foundation for larger-scale research that intends to explore causal relationships among intersectional identities, science identities, appraisal, and visitor engagement.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Science television shows are an important source of informal learning and enrichment for preschool-aged children. However, one limitation of television programming is that it is largely a one-way, non-interactive medium. Research suggests that children learn best through active engagement with content, and that parents can make TV watching more interactive by co-viewing and talking with their children. However, many parents and other adults may lack the time or experience and comfort with science language and content to provide critcial just-in-time support for their children. This study seeks to take advantage of recent advances in artificial intelligence that now allow children to enjoyably interact with automated conversational agents. The research team will explore whether such conversational agents, embedded as an on-screen character in a science video, can meaningfully interact with children about the science content of the show by simulating the benefits of co-viewing with an adult. If successful, the project could lay the foundation for a new genre of science shows, helping transform video watching into more interactive and engaging learning experiences. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project will develop interactive videos incorporating a conversational agent in three 11-minute episodes of a future children's animated television program. The videos will enable children to speak with the main character of the show as the character solves everyday science mysteries, thus priming children to engage in observation, prediction, pattern finding, and problem solving through scaffolded conversation. This study will be carried out in two iterative cycles with the goal of developing and testing the embedded conversational function for each episode. In each cycle, the project team, which includes experts in children's TV production, as well as educational and HCI researchers will develop the storyboard and conversation prompts and follow-ups, create animated videos based on the revised script, and create a mobile application of the interactive video integrated with the conversational agent. Field testing with 10 children will be conducted to iteratively improve the embedded conversational function. In the pilot testing stage, a controlled study will be conducted with 30 children in each group (N=120): 1) watching the episode with the embedded conversational function; 2) watching the episode with a human partner carrying out the dialogue in the script rather than the virtual character; 3) watching the episode with pseudo-interaction, in which the animated character asks questions but does not attempt to understand or personally respond to children's answers; and 4) watching the episode with no dialogue. Data collected from the experiments will be used to examine whether and in what ways use of a conversational agent affects children's engagement, attention, communication strategies, perceptions, and science learning, and whether these effects vary by children's age, gender, socioeconomic status, language background, and oral language proficiency in English. The project will provide a comprehensive evaluation of the feasibility and potential of incorporating conversational agents into screen media to foster young children's STEM learning and engagement.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Mark WarschauerDaniel WhitesonSara DeWittAndres BustamanteAbby Jenkins
Robots and robotics excite and challenge youths and adults. Unfortunately, the cost of purchasing robots or building useful robots is prohibitive for many low resource individuals and groups. This project will relieve this expense and provide an opportunity for resource limited individuals to experience the thrilling aspects of robotics by building a computer game that simulates robotic action. This project uses co-robotics wherein the participating player programs an avatar to assist in a symbiotic manner to achieve the goals of the game and participant. The game will provide access to the ideas and concepts such as programing, computational thinking and role assumption. The overarching goals are (1) to engage low-resource learners in STEM education through robotics in out-of-school spaces, and (2) to update the field of robotics-base STEM education to integrate the co-robotics paradigm.
This project is designed to gain knowledge on how co-robotics can be used in the informal education sector to facilitate the integration of computational science with STEM topics and to expand the educational use of co-robotics. Because the concept of co-robotics is new, a designed-based research approach will be used to build theoretical knowledge and knowledge of effective interventions for helping participants learn programing and computational thinking. Data will be collected from several sources including surveys, self-reports, in game surveys, pre and post-tests. These data collection efforts will address the following areas: Technology reliability, Resolution of cognitive tension around co-play, Accelerate discovery and initial engagement, Foster role-taking and interdependence with co-robots, Investigate social learning, and Validate measures using item response theory analysis. The DBR study questions are:
1.What design principles support the development of P3Gs that can effectively attract initial engagement in a free-choice OST space that offers large numbers of competing options? 2.What design principles support a P3G gameplay loop that enables learning of complex skills, computational thinking and co-robotics norms, and building of individual and career interest over the course of repeated engagement?
3.What design principles support P3Gs in attaining a high rate of re-engagement within low-resource OST settings? 4.What kinds of positive impact can P3Gs have on their proximal and distal environment? In addition, the project will research these questions about design: 1.What technical and game design features are needed to accommodate technological interruption? 2.What design elements or principles mitigate competition for cognitive resources between real-time play and understanding the co-robotic's behavior in relation to the code the player wrote for it? 3.What design elements are effective at getting learners in OST settings to notice and start playing the game? 4.What designs are effective at encouraging learners to engage with challenging content, particularly the transition from manual play to co-play? 5.What design elements help players develop a stake in the role the game offers? 6.What social behaviors emerge organically around a P3G prototype that is not designed to evoke specific social interactions?
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.
The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
H Chad LaneNeil CominsJorge Perez-GallegoDavid Condon
This Research in Service to Practice project will bring together representatives from six long-standing youth programs, experts in the field of out-of-school-time youth programming, and education researchers to collaboratively explore the long-term (15-25 years) impact of STEM-focused, intensive (100+ hours/year), multi-year programming. The six partnering programs have maintained records with a combined total of over 3000 alums who participated between 1995 and 2005. This four-year research project uses an explanatory, sequential, mixed-method design to carry out four steps: (1) identify and describe the impact on the lives of program alums who are now ages 30 to 45; (2) identify causal pathways from program strategies to long-term outcomes; (3) develop an understanding of these pathways from the perspective of the people who experienced them; and (4) disseminate this knowledge broadly to those associated with STEM-focused programming. Research questions include: How did these programs affect youth's lives as they progressed toward and into adulthood? What program strategies and what participant attributes contributed most to the staying power of these effects? What life events and social structures supported and inhibited participant outcomes? This project describes the effects, identifies the causal pathways, and produces materials that programs can use for both strategic planning and generating support resources. Additionally, this project provides research methodology for organizations that want to conduct their own retrospective research and lays a foundation for a more comprehensive study that includes programs without historical documentation. The project aligns with NSF's Big Idea "NSF INCLUDES: Transforming education and career pathways to help broaden participation in science and engineering" by providing essential information about the long-term effect of interventions on educational and career pathways in STEM.
The project's approach involves three phases: (1) research preparation, (2) causal structural modeling of survey data from approximately 2,000 respondents, and (3) rich qualitative follow-up. Human ecological and self-determination theories inform data collection and analyses at every project phase. In the preparation phase, program staff complete program profiles from an historic perspective by identifying program strategies that may have included, for example, scientific research, robotics development, teaching science in informal settings, and working in scientific research labs. In the quantitative phase, the project will recruit alums who attended one of the 6 youth programs between 1995 and 2005 to submit a current resume and complete an online questionnaire, based on the following scaled variables: retrospective recall of basic psychological need satisfaction and frustration in relation to perceived program strategies; STEM identity (at three time periods: pre-program; post-program; and current); current well-being; career influences; and career barriers. The questionnaire also includes open-ended questions about life events related to the following categories: family and friends, school and work, and living conditions. Analysis of the questionnaire will lead to development of a causal structural model. In the qualitative phase, data will be collected from a purposefully selected sample of 30 alums based on findings from the quantitative phase. Methods include interviews, photo journals, and STEM pathways maps. Analysis of interviews, resumes, and photo journals take place within the structure of basic psychological need satisfaction and motivational quality across ecological systems over time. Qualitative analysis uses the constant comparative method, and findings are used to update and refine the final causal structural model and inform overall findings, conclusions, and recommendations of the project.
Since the 1990s, out-of-school time programs have engaged youth from underserved communities in STEM learning and in building interest in STEM careers, yet these programs often based on untested assumptions that participation has lasting effects on education, career, and life choices related to STEM. This Research in Service to Practice project has the potential to 1) guide practitioners in program improvement and improved program outcomes; 2) provide insight into achieving program goals, such as equity, increased well-being of participants, an informed citizenry, and a diversified STEM workforce; and 3) inform multi-stakeholder decision-making with respect to this type of programming. This research also builds a foundation of research data collection and analysis methods to guide and support future research on long term-impacts and youth STEM programming. Dissemination strategies include a website, webinars, video, infographics, conference presentations, and written reports to reach stakeholders including practitioners, researchers, administrators, and funders.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.
This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.
This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the State of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.
Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.
The potential insights this research could garner on intersectionality between formal and informal STEM learning are substantial. As a consequence, this project is co-funded by the Advancing Informal STEM Learning (AISL) and Discovery Research K-12 (DRK-12) Programs. The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Likewise, the Discovery Research-K12 Program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.