This guide shares some of the successes and challenges behind the Science Museum of Minnesota’s Cardboard City exhibition and our partnership with museums across the country through Cardboard Collaborative.
The Cardboard Collaborative is the product of 10 years of work at the Science Museum of Minnesota and part of a larger collaboration with local community organizations to center BIPOC family priorities and experiences. This guide is intended to share what they have learned and support others to create their own cardboard maker worlds.
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
The Lewis H. Latimer House Museum will develop a more cohesive education program that reflects both the museum's resources and the needs of local schools. The museum's deputy director and Tinkering Lab educator will work together to design a curriculum that meets current New York State and city standards, enabling the museum to more effectively serve schools in the community with object-based learning experiences. Packets of educational materials will be developed and made available for school teachers to download and use in their classrooms prior to and following visits to the museum. Target schools will be actively involved in the process of testing and utilizing the products. Project results will be shared with internal and external stakeholders to sustain long-term improvement and enhance institutional capacity.
Making experiences and activities are rich with opportunities for mathematical reasoning that often go unrecognized by both participants and educators. Since 2015, we have been exploring this potential through the Math in the Making initiative. The work focuses particularly on children’s museums and science centers, many of which have developed maker spaces and programs over the last decade. In this article, we share insights from our most recent round of research. To begin, we consider the fundamental question of what it means to authentically integrate mathematics with making.
Using a design-based research approach, we studied ways to advance opportunities for children and families to engage in engineering design practices in an informal educational setting. 213 families with 5–11-year-old children were observed as they visited a tinkering exhibit at a children’s museum during one of three iterations of a program posing an engineering design challenge. Children’s narrative reflections about their experience were recorded immediately after tinkering. Across iterations of the program, changes to the exhibit design and facilitation provided by museum staff corresponded
DATE:
TEAM MEMBERS:
Maria MarcusDiana AcostaPirko TouguDavid UttalCatherine Haden
As professionals, we often assume that the engaging experiences visitors have in our exhibits and programs will lead to long-term learning. But how do we know this is happening, and, moreover, how do we design exhibits, programs and interactions to maximize visitors’ ability to learn from their experiences? At Chicago Children’s Museum a long- standing research collaboration with Northwestern University and Loyola, Chicago University has allowed us to examine how families’ conversational reflections during and after their in-museum experiences impact children’s ability to process and recall
But many young people face signifcant economic, cultural, historical, and/or social obstacles that distance them from STEM as a meaningful or viable option— these range from under-resourced schools, race- and gender-based discrimination, to the dominant cultural norms of STEM professions or the historical uses of STEM to oppress or disadvantage socio-economically marginalized communities (Philip and Azevedo 2017). As a result, participation in STEM-organized hobby groups, academic programs, and professions remains low among many racial, ethnic, and gender groups (Dawson 2017). One solution to
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.
The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.
The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.