Current science education reforms emphasize the ways in which students’ scientific practices, such as experimenting, collecting data, and interpreting results, develop over time. Bricker and Bell suggest that practices develop not only over time, but also across multiple settings and opportunities. Their study shows how, over several years, one youth’s identification with science was shaped by many everyday moments, social configurations, and collaborators.
Researchers examined whether engineering activities and lessons can help students apply science and math content in real-world contexts and gain insights into the professional activities and goals of engineers.
The new standards posit that “scientific argumentation,” in which students use data to argue from evidence, is a key practice for student science learning. However, a mismatch in expectations about the purpose of classroom discussions can inhibit productive forms of argumentation. Berland and Hammer compare forms of class discussions to identify how best to support students’ engagement in argumentation.
Dancu, Gutwill, and Hido describe a process for designing science museum exhibits to create playful learning experiences. They outline five characteristics of play: It is structured by constraints, active without being stressful, focused on process not outcome, self-directed, and imaginative. For each characteristic, they offer an example of iterative design using formative evaluation.
For over a decade, science educators have lamented the ways in which testing in reading and mathematics has reduced time for science instruction. Blank used 20 years of national teacher and student data to understand how time allocated to science instruction combines with student demographics to shape test scores. The study found a small but significant positive relationship between time on science instruction and performance.
Bathgate, Schunn, and Correnti investigate students’ motivation toward science across three dimensions: the context or setting, the way in which students interact with science materials or ideas, and the activity topic. Findings point to the importance of understanding children’s perceptions of specific science topics, not just science in general.
In order to reframe how learning is organized in traditionally male-dominated areas of STEM education, the authors show how collaborative girl-boy pairs engaged with an “e-textiles” making activity. E-textiles are circuit activities combining needles, fabric, and conductive thread, challenging traditional gender practices related to both sewing and electronics.
This paper investigates how intentionally designed features of an out-of-school time program, Studio STEM, influenced middle school youths’ engagement in their learning. The authors took a connected learning approach, using new media to support peer interaction and engagement with an engineering design challenge in an open and flexible learning environment.
In Spring 2006, the Missouri Botanical Garden received a National Science Foundation grant to fund the LIONS program. LIONS trained educators from the St. Louis region, through professional development about place-based education, to deliver after school and summer programming to students grades 5 through 8. Since its inception, the LIONS program has included evaluation of program implementation and outcomes. There were dramatic changes in the scope of the program, which expanded beyond the originally targeted University City school district by adding additional schools recruited by LIONS
WCS launched its electronic field trip program, Distance Learning Expeditions, in 2001 when there
was tremendous interest in the educational community in the potential of videoconferencing
technology for program delivery, as well as money available for the purchase of related broadcast
equipment. The program grew rapidly and was successful through 2009 -- serving 9,600 students
in 2006-07, its largest year. From 2010 to 2014, with school budget cuts, high equipment
maintenance costs, and shifts in staffing, participation in the program declined. In 2010, WCS
secured a grant from IMLS for
This commentary forms the conclusion of a special Virtual Issue of Science Education focusing on the intersection of informal STEM education and the learning sciences.
Using families as the analytical focus, this study informs the field of informal science education with a focus on the role of prior experiences in family science conversations during nature walks at an outdoor-based nature center. Through video-based research, the team analyzed 16 families during walks at a nature center. Each family's prior science learning experience provided conversational strategies for learning together as a social group and when making meaning out of observations in the outdoors. This analysis provides three main findings: (1) families frequently tapped into a vast