The organization and functioning of research have radically changed over the last 10 or 20 years, as a result of a determined political action. The activism of some scientists, during this period, has failed to significantly alter this trend. So far. Today, New Public Management is triumphant. It has been implemented by a category of former scientists who have become administrators, evaluators, organizers. As a result, the prime role of scientific publications is no longer to exchange scientific information but to allow a measure of scientific production, and to rank the principal
DATE:
TEAM MEMBERS:
Alain Trautmann
resourceresearchProfessional Development, Conferences, and Networks
Improving STEM education in and out of schools depends on the collaborative efforts of educators, policy makers, education researchers, and community leaders. One promising strategy for structuring such collaborations is research-practice partnerships (RPPs) that bring researchers and educators together for sustained joint work around a key problem of practice of mutual concern. In June 2014, the Research + Practice (R+P) Collaboratory held two workshops focused on building capacity for research-practice partnerships in conjunction with the 11th International Conference of the Learning
Different stakeholders in research-practice partnerships often come from various institutions with distinct vocabulary, communication structures, and professional practices. To ensure that partnerships are mutually beneficial and equitable for educators and researchers alike, partners Jean Ryoo, Michelle Choi, and Emily McLeod from the California Tinkering Afterschool Network co-developed this resource for building equitable research-practice partnerships. This resource describes what equitable collaborations look like and offers guiding questions for group members to ask themselves in order
Science communication processes are complex and uncertain. Designing and managing these processes using a step-by-step approach, allows those with science communication responsibility to manoeuvre between moral or normative issues, practical experiences, empirical data and theoretical foundations. The tool described in this study is an evidence-based questionnaire, tested in practice for feasibility. The key element of this decision aid is a challenge to the science communication practitioners to reflect on their attitudes, knowledge, reasoning and decision-making in a step-by-step manner to
DATE:
TEAM MEMBERS:
Maarten C.A. van der SandenFrans J. Meijman
Formative evaluation should play a key role in the development of a science communication project or initiative. Such research is vital to understanding the needs and interests of the audience or participants; meeting these needs and interests helps ensure the project’s success. However, there can be a temptation to plough ahead without undertaking adequate formative evaluation. Using ScienceComics as a case study, this article explores both the challenges and benefits of using formative evaluation to guide project development. It focuses on the actors involved in the formative stages and the
The science education community is buzzing about STEM learning ecosystems, ecologies of learning, and ecological perspectives on learning. You may not know it, but if your teaching involves building on young people’s prior knowledge or making connections between the science curriculum and science in the broader world, your work may already reflect aspects of ecological learning theories. At the heart of an ecological perspective on learning is the need to make connections across formal, informal, and everyday learning. So, what are STEM learning ecologies all about, and how can science
Connected Science Learning is a journal around which all science, technology, engineering, and math (STEM) educators can gather. The National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC) have partnered on this National Science Foundation (NSF)–funded project to leverage our extensive combined reach across the formal and informal STEM educator communities. NSTA represents about 50,000 K–12 science educators, while ASTC member science centers and museums are in communities across the globe, reaching 100 million visitors per year, many of whom are
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?
The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.
The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
This document contains the appendices and literature review from the report "Art+Science: Broadening Youth Participation in STEM Learning." It includes assessment tools used during the project.
Art and science represent two powerful human ways of investigating and understanding the natural and social world. Both are creative processes involving acts of observation, interpretation, meaning-making, and the communication of new insights. While standards of evidence may vary between the two fields, there are also many common practices. Many artists, for example, employ a range of computational, digital and engineering practices. Many scientists are guided in part by aesthetic considerations in the formulation of questions, theories, and models. In this report we share the results of a
This chapter reviews four projects that reflect the principles of design-based implementation research (DBIR) in an effort to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with DBIR.The goal of this chapter is to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with design-based implementation research (DBIR). As Penuel, Fishman, Cheng, and Sabelli (2011) described, DBIR entails engaging “learning scientists, policy researchers, and
DATE:
TEAM MEMBERS:
Jennifer RussellKara JacksonAndrew KrummKenneth Frank
resourceresearchProfessional Development, Conferences, and Networks
In this paper, the authors synthesize three types of research-practice partnerships (RPPs) for informal learning. The article includes descriptions of example partnerships between local researchers and informal educators from the Hive NYC Learning Network, Community Practice Research Collaboration, and California Tinkering Afterschool Network. The synthesis paper concludes with a review of characteristics commonly found in partnerships in informal science education.