We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanJasmine ShawChristine VillanoChrista MulderElena SparrowDouglas Cost
We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanDouglas CostChristine Villano
An individual's sense of themselves as a “STEM person” is largely formed through recognition feedback. Unfortunately, for many minoritized individuals who engage in STEM (science, technology, engineering, and mathematics) in formal and informal spaces, this recognition often adheres to long-standing exclusionary expectations of what STEM participation entails and institutionalized stereotypes of what it means to be a STEM person. However, caregivers, who necessarily share cultural backgrounds, norms, and values with their children, can play an important role in recognizing their children's
DATE:
TEAM MEMBERS:
Heidi CianRemy DouSheila CastroElizabeth Palma-D'souzaAlexandra Martinez
This practitioner guide summarizes lessons learned from a three-year design-based research project focused on using elements of narrative (such as characters, settings, and problem frames) to evoke empathy and support girls' engagement in engineering design practices. The guide includes a summary of the driving concepts and key research findings from this work, as well as design principles for creating narrative-based engineering activities. Six activity case studies illustrate the design principles in action, and facilitation tips and observation tools offer practical guidance in developing
Using a design-based research approach, we studied ways to advance opportunities for children and families to engage in engineering design practices in an informal educational setting. 213 families with 5–11-year-old children were observed as they visited a tinkering exhibit at a children’s museum during one of three iterations of a program posing an engineering design challenge. Children’s narrative reflections about their experience were recorded immediately after tinkering. Across iterations of the program, changes to the exhibit design and facilitation provided by museum staff corresponded
DATE:
TEAM MEMBERS:
Maria MarcusDiana AcostaPirko TouguDavid UttalCatherine Haden
Kid-focused STEM podcasts have grown in popularity over the years, but the ISE field lacks knowledge of the impact and value of this medium as a means for engaging children and families in science learning and discovery. This research summary shares the results of an exploratory study of the popular children's science podcast, Brains On!, in an effort to being to fill this knowledge gap.
The research was guided by three overarching research questions:
Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts?
How are Brains On
This document provides a brief story about how the Designing our Tomorrow team explored some of their questions about exhibit features by using the C-PIECE Framework: Framework of Collaborative Practices at Interactive Engineering Challenge Exhibits.
This exploratory line of inquiry looked at relationships between exhibit features and visitor groups’ Informed engineering design practices. This brief includes an Introduction, Methods and Findings, Summary, and Implications.
This exploratory line of inquiry was conducted to inform the development of the Designing our Tomorrow exhibit and
Are you interested in co-creating fun activities that exercise groups’ engineering practices? Are you curious about the types of practices that groups can exercise through exhibits?
The Framework of Collaborative Practices at Interactive Engineering Challenge Exhibits (C-PIECE Framework) provides informal education professionals with a guide when co-developing, designing, facilitating, evaluating and researching engineering design challenge experiences.
This framework was developed with input from inter-generational families, including girls 9 to 14 years old. It was adapted from theory
With the world in the midst of the COVID-19 pandemic, children are often having or expressing worries and fears. Their caregivers -- parents and those who are providing direct care for children -- are seeking trusted sources of information to help them explain this disease and help ease children’s worries. This resource guide reflects some of the work of our current NSF-funded research study (NSF#2029209) about the communication needs of children and families during the pandemic, seeking to understand how they are supported in having conversations about the coronavirus and pandemic-related
With the world in the midst of the COVID-19 pandemic, families are seeking trusted and engaging sources of scientific information to help their children understand prevention, transmission, treatment, and many other topics related to COVID-19 in an effort to ease children’s fears. The goal of our NSF-funded RAPID research study is to understand how children’s science podcasts, as well as other educational products, can provide families with information to help ease children’s worries during a pandemic by increasing children’s understanding of pandemic-related science concepts, empowering
There is growing evidence that science capital (science-related forms of social and cultural capital) and family habitus (dispositions for science) influence STEM career decisions by youth. This study presents reliability and validity evidence for a survey of factors that influence career aspirations in science. Psychometric properties of the NextGen Scientist Survey were evaluated with 889 youth in grades 6–8. An exploratory factor analysis (EFA) found four factors (Science Expectancy Value, Science Experiences, Future Science Task Value, and Family Science Achievement Values). Using
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS:
Cheryl JuarezVerónika NúñezExploratorium