Communication is an essential component to scientific inquiry, and specifically the primary literature is highly valued by scientists. Yet, the role of primary literature within scientific inquiry is generally absent from the science classroom. In this study we examined how middle and high school student perceptions of scientific inquiry changed after they engaged in a peer-review and publication process of their research papers. We interviewed twelve students who published their papers in the [Journal], a science journal dedicated to publishing the research of middle and high school students
DATE:
TEAM MEMBERS:
Sarah FankhauserGwendolynne ReidGwendolyn MirzoyanClara MeadersOlivia Ho-Shing
In The Nature of Community: SCIENCES, we share the lessons learned from an innovative partnership designed to leverage the strengths of two nonprofit organizations—a large cultural institution and a smaller, deeply-rooted community-based organization, both of which offer informal science education expertise.
You’ll read first-hand reflections of how staff members, community leaders and members, children, and adults experienced this partnership: the expectations, surprises, challenges, successes, and lessons learned. We hope the description of this partnership inspires other organizations to
Citizen science offers youth and educators unique opportunities to observe and explore the world through authentic research experiences that are necessary for robust STEM (science, technology, engineering, and math) learning. STEM learning is key to fostering informed and engaged youth who are ready to tackle the challenges of our future. Our increasingly complex world depends on helping youth cultivate skills needed to think critically and creatively about 21st Century challenges— skills such as observation, communication, and data literacy. STEM gives all students the building blocks for
This paper was presented at the annual meeting of the National Association for Research in Science Teaching, NARST, Chicago, IL. It describes findings from the Work With a Scientist Program (WWASP), which engages scientists and high school students in cogenerative dialogues.
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
One of the principal challenges of the partnership of scientists and high school students are the existent barriers of language between them (Kim & Fortner, 2007). In other words, since scientists are usefully deemed as characters with higher power, status, and knowledge, students may feel nervous or intimidated, especially when scientists speak jargons and complex language. The best educators have a magical way of engaging their audiences with compelling stories. Even the
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
Purpose & Problem - According to some existing results identified in the literature, the partnership between high school students and scientist involves several challenges, such as time management, lack of equipment, communication barriers, organization, complexity of the scientific language and scientist availability. The purpose is to address these problems and identify effective ways that can enhance the partnership between the scientist and high school students during
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
This study introduces cogenerative dialogues as a pedagogical tool to enhance the communications between students and engineers in a university internship environment. High school student interns worked with engineers for 7 months and were invited to conduct cogenerative dialogues with engineers regularly and discuss any issues, concerns, positives happened in the internship in order to improve their learning experience.
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. It describes the Work With a Scientist (WWASP) program, in which scientists and high school students engage in co-generative dialogues.
This poster was presented at the 2017 Annual Meeting of the American Educational Research Association, AERA, San Antonio, TX.
The Next Generation Science Standards (NGSS Lead States, 2013) emphasize that K–12 science education should reflect real-world interconnections in science and focus on deeper understanding and application of content. One effective way to help students learn to apply science is to invite them to work with scientists on authentic scientific projects. Internship programs designed for students to work with scientists have been suggested as one of the most productive
This report summarizes findings from a research-practice partnership investigating STEM-rich making in afterschool programs serving young people from communities historically under-represented in STEM. The three-year study identified key dimensions related to (1) How STEM-Rich Making advances afterschool programmatic goals related to socio-emotional and intellectual growth for youth; (2) Key characteristics of programs that effectively engage youth historically marginalized in STEM fields; and (3) Staff development needs to support equity-oriented STEM-Rich Making programs.
The first step of the SEDEC project has been a survey on teachers and pupils perception of science, scientists, and the European dimension of science. Different research actions have been organized for the different targets, and have been held in the six countries involved in the project: Czech Republic, France, Italy, Portugal, Poland and Romania. This article will present the analysis of more then 1000 drawings realized by 9 and 14 years old pupils and representing "a scientist". Form the drawings emerge stereotypes, fears, desires, expectations and more, a whole imaginery that has to be