Skip to main content

Community Repository Search Results

resource research Media and Technology
Science communicators and educators need strategies to account for the differences in ways that learners build on prior knowledge and experiences, and position these differences as strengths, rather than as weaknesses. Science communicators and STEM educators can more effectively engage their audiences by applying asset-based approaches in their activities and strategies. About this resource: This is a practice brief produced by CAISE's Broadening Participation in STEM Task Force to help informal STEM education (ISE) and science communication groups reflect on and strengthen their
DATE:
TEAM MEMBERS: Raychelle Burks Sunshine Menezes Center for Advancement of Informal Science Education (CAISE)
resource research Public Programs
Learning is a lifelong, life-wide, and life-deep process. Narrow definitions of learning as consisting only of conceptual knowledge can limit how we engage people with and in STEM. Science communicators and educators can design opportunities to build on prior knowledge to help people make sense of new ideas and experiences in ways that can guide decision-making as well as future choices. About this resource: This is a practice brief produced by CAISE's Broadening Participation in STEM Task Force to help informal STEM education (ISE) and science communication groups reflect on and
DATE:
TEAM MEMBERS: Bronwyn Bevan Sunshine Menezes
resource research Media and Technology
Though many communities are now undertaking collective efforts to transform who participates in science, technology, engineering, and math (STEM), the informal science education and science communication sectors are largely peripheral to these initiatives. A task force assembled by the Center for the Advancement of Informal STEM Education (CAISE) spent 18 months examining how the public engagement with STEM sector typically presents and represents STEM, and deliberated on whether or not it does so in truly inclusive ways that can contribute to efforts to broaden participation. In this
DATE:
resource research Media and Technology
To help informal STEM education (ISE) and science communication groups reflect on and strengthen their efforts to broaden participation in STEM, CAISE’s Broadening Participation in STEM Task Force developed a suite of professional development tools. If you are a staff leader or trainer working on broadening participation, these resources can help support your work. You can use them to plan and lead reflective discussions about current practices, with an eye to developing goals, strategies, and priorities that can make your ISE and science communication work more inclusive. Toolkit
DATE:
resource research Professional Development, Conferences, and Networks
In informal STEM education, thinking about engagement has evolved from a focus on innovative ways of attracting the initial attention of science center/museum visitors or media consumers to strategies for designing environments and activities that foster deeper experiences such as experimentation, skill development, and contemplation in a variety of settings. In the science communication field, engagement increasingly refers to “two-way” approaches to designing and facilitating interactions between STEM professionals and diverse “publics” that take into account the knowledge and prior
DATE:
resource research Professional Development, Conferences, and Networks
The landmark 2009 National Research Council consensus report Learning Science in Informal Environments, posited that learners in informal environments “experience excitement, interest, and motivation to learn about phenomena in the natural and physical world” as one of six strands of informal science learning. In 2016, the American Association for the Advancement of Science (AAAS) Center for Public Engagement with Science and Technology identified “increased interest and motivation” around STEM topics as a short-term, measurable outcome of science engagement activities. For many professionals
DATE:
resource research Professional Development, Conferences, and Networks
In everyday language, one might define “identity” as the way that people answer questions such as: “Who do I think I am, or who can I be, where do I belong, and how do I think other people see me?” The concept of identity has become an increasingly important factor in the study of informal science, technology, engineering, and math (STEM) education and science communication. And a growing number of designers name an enhanced science or STEM identity as an intended outcome for participants in their activities and programs. In 2017, the CAISE Evaluation and Measurement Task Force asked a
DATE:
resource research Public Programs
This is a summary description of the 2018 Summer Science Camp offered by the Morgridge Institute for Research at the Discovery Building on the UW-Madison campus. The camp has been offered annualy since 2007, and the 2018 evaluation produced some specific ideas for improving the camp. Since 2007, more than 300 students from rural Wisconsin high schools have attended the camp. This population has less access to the many educational advantages that regular internet access affords their urban counterparts. The science camp team is exploring how to carry out a study of camp alumni.
DATE:
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource evaluation Media and Technology
This report summarizes evaluative findings from Computational Thinking in Ecosystems project, and the resulting product, i.e., a functional draft of a game called “The Pack.” Evaluative efforts included gathering feedback from key stakeholders—including members of the design based research (DBR) team members at the New York Hall of Science (NYSCI) along with advisors and project partners— about the game and the DBR process, as well as an independent assessment of the game via feedback from educators and a round of play-testing with youth.
DATE:
TEAM MEMBERS: Jennifer Borland
resource research Public Programs
This poster was presented at the 2019 AISL PI Meeting in Washington, DC. It provides an overview of a project designed to broaden participation of blind students in engineering fields through the development of spatial ability skills and the showcasing of nonvisually accessible teaching methods and techniques.
DATE:
TEAM MEMBERS: Seth Lamkin Anil Lewis Wade Goodridge Natalie Shaheen Mary Ann Wojton Ann Cunningham Peter Anderson
resource evaluation Professional Development, Conferences, and Networks
The STAR Library Network Phase 2 (STAR Net) brings inquiry-based STEM learning experiences to public libraries through six traveling exhibits, training for library staff and associated programming for library patrons, and a virtual community of practice for library staff and others interested in bringing STEM programming to libraries. In 2014, the National Science Foundation (NSF) awarded a four-year grant to the Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL) and its partners—the American Library Association (ALA), the Lunar and Planetary Institute (LPI), the
DATE:
TEAM MEMBERS: Ginger Fitzhugh Sarah Armstrong Sheila Rodriguez Vicky Coulon