DESIGN SQUAD GLOBAL (DSG) is a web-based, mobile-accessible digital hub and outreach initiative that creates new opportunities to empower middle school youth to solve real-world problems and understand the impact of engineering in a global context. The project builds on the Design Squad model for engineering education (including a television show and website). The ultimate goals of Design Squad Global are to: (1) develop innovative ways to incorporate effective engineering education into informal learning environments; (2) inform the field about promising practices in cross-cultural
We asked science centers and museums to share their best pieces of advice and most important lessons learned regarding the following: 1) selecting topics and activities for out-of-school time programs, 2) partnering with afterschool providers and other community partners, 3) meeting the needs of underserved communities in out-of-school time programs, and 4) running successful camps or programs during school vacations.
The development of character is a valued objective for many kinds of educational programs that take place both in and outside of school. Educators and administrators who develop and run programs that seek to develop character recognize that the established approaches for doing so have much in common, and they are eager to learn about promising practices used in other settings, evidence of effectiveness, and ways to measure the effectiveness of their own approaches.
In July 2016, the National Academies of Sciences, Engineering, and Medicine held a workshop to review research and practice
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.
Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
The “Fourth Industrial Revolution” is transforming the world of work. Just as it happened with the technologies of the steam, electricity and computer revolutions, digital technologies are now becoming pervasive and reshaping all parts of the global economy. The computing industry’s rate of job creation in the U.S. is now three times the U.S. national average. This rapid expansion of the computing workforce means that computing skills – with coding at the core – are the most sought-after skills in the American job market.
Yet amid this boom, research by Accenture and Girls Who Code shows
Abstract
In 2011, Donna DiBartolomeo and Zachary Clark enrolled in the Arts in Education Program at Harvard Graduate School of Education. Harvard Graduate School of Education is home to Project Zero, an educational research group comprising multiple, independently funded projects examining creativity, ethics, understanding, and other aspects of learning and its processes. Under the guidance of Principal Investigator Howard Gardner and Project Manager Katie Davis, the authors were tasked with developing a methodology capable of observing finegrained, objective detail in complete works of
This NSF INCLUDES pilot addresses the challenge of broadening participation in Science, Technology, Engineering and Math (STEM) among minoritized youth in grades 5-8 and their access to computer science (CS), which is recognized as integral to all STEM disciplines. This project will specifically focus on developing and understanding computing experiences intentionally designed to strengthen mathematical skills utilizing culturally responsive pedagogy. Culturally responsive pedagogy integrates knowledge relevant to students' identities and communities with computational learning activities, and maximizes the potential for increasing engagement, competence, and belonging of underrepresented youth in computing. This pilot will be situated in community-based organizations, including Boys and Girls Clubs and Public Libraries, with the support of industry partners and the local Department of Education. Given the role of community-based organizations and libraries across the nation for community engagement and educational enrichment, this work represents an exciting opportunity for spreading into thousands of libraries and community centers across the nation, thereby having collective impact that materializes CS for All.
This project will engage minoritized youth in grades 5-8. The overarching vision is to establish a scalable model for providing these students with recurrent opportunities to create computational artifacts that are culturally-responsive to their community contexts. In addition, there will be an explicit and simultaneous focus on strengthening students' mathematical skills. The project has four goals: (1) facilitate culturally-responsive learning of key CS concepts and practices; (2) build youth and community knowledge around positive impacts of computing on local communities; (3) increase participants' knowledge, confidence and interest in becoming creators of computing innovations; and (4) strengthen mathematical skills through intentional computing experiences. The project will adapt and implement CS modules from the NSF-funded Exploring Computer Science curriculum, and will intentionally reinforce mathematics skills and community engagement. It will design and implement a culturally-responsive training model for establishing community instructors who can support CS project learning. Finally, it will create instruments for monitoring project goals and participant outcomes. Due to the collaboration with community-based organizations present in cities across the nation, the model has strong potential to scale up regionally and nationally.
DATE:
-
TEAM MEMBERS:
Lori PollockChrystalla MouzaJohn PeleskoRosalie Rolon-Dow
This project seeks to prepare female Hispanic students for leadership in the STEM workforce. The project seeks to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky workforce and educational pipeline resulting in matriculation to and graduation from undergraduate STEM programs. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce. To accomplish these goals, the PIs will: (1) work with partners to identify, recruit, and screen bright, energetic Hispanic females in their freshman year of high school who show promise and interest in STEM disciplines; (2) engage selected students and their families in formal and informal STEM learning both throughout the school year and during summer residential experiences to enable the students to further develop and clarify their STEM calling; (3)prepare the students to matriculate to undergraduate college; (4) provide program participants with full-tuition scholarships to ensure undergraduate education is attainable; and (5) at our institution and partner colleges, provide dedicated advisors and mentors and cohort activities to ensure undergraduate persistence and success.
Technical Summary
The PIs seek to prepare female Hispanic students for leadership in the STEM workforce. To compete in the global economy, maintain national security, and meet serious environmental challenges, more skilled graduates are needed to fill STEM jobs. An untapped source of talent exists in those populations that continue to be underrepresented in STEM fields, including women and people of color. This work will help to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky pipeline resulting in matriculation to and graduation from undergraduate STEM education. The work builds on research that shows that mentored research opportunities and peer support and interaction improves persistence in female students. It also builds on regional models of collective impact whereby a variety of corporate, nonprofit, and foundation organizations successfully join together for large-impact projects. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce.
DATE:
-
TEAM MEMBERS:
April MarchettiCharles EnglishRebecca MichelsenRachele DominguezLaurie Massery
Computer science education is rapidly being recognized as essential for all students to develop into successful citizens of the 21st century. A diverse group of stakeholders, including educators, business and industry, policymakers, and parents all agree on the importance of computer science. Significant workforce needs in particular are driving the push for computer science education. In comparison to all other U.S. job categories, computing is projected to have the largest percent growth between 2014 and 2024. And this projected growth may not even entirely capture the full number of
How can programs be exciting, innovative, and engaging when providers and youth do not have what they need? How can youth feel valued and respected when they are surrounded by worn-out and broken materials?
Out-of-school time (OST) youth programs are inherently difficult to assess. They are often very dynamic: Many youth interact with one another and with staff members in various physical environments. Despite the challenge, measuring quality is critical to help program directors and policy makers identify where to improve and how to support those improvements.
DATE:
TEAM MEMBERS:
Allison TracyLinda CharmaramanIneke CederAmanda RicherWendy Surr
STEM learning is a process that unfolds through dynamic interactions over time and across settings. Formal education in schools is not the only—or necessarily the most significant—context for STEM learning.