Researchers have described the inquiry process as involving five Es: engage, explore, explain, elaborate, and evaluate. Designed to facilitate the process of conceptual change in science, the 5E model can help students at almost any level engage in scientific practices. This brief correlates the 5E framework outlined by Bybee and colleagues with the science practices described in the Framework for K–12 Science Education.
This Barron and Bell article provides a foundational overview for how “cross-setting learning” can equitably engage all youth across formal and informal educational contexts. The paper offers: 1) a review of research; 2) descriptions of supports and challenges to cross-setting learning, including learner interest and identity; and 3) suggestions for research and assessments that capture learning for underrepresented youth.
The field of informal science education has embraced “making” and design activities as a powerful approach to engaging learners. This chapter by Blikstein finds that in order to create disruptive spaces where students can learn STEM, design and build inventive projects, educators . This paper provides theoretical background and concrete cases that illuminate program design and implementation issues related to making.
Petrich, Wilkinson, and Bevan (2013) explore three areas of design principles related to tinkering. The authors share their thinking related to the activity design, environmental design, and facilitation practices involved in creating and supporting rich tinkering experiences for museumgoers. They wrote a chapter on tinkering, which describes how the group initiated, cultivated, and facilitated a making and tinkering space on the floor of a museum. Specifically the chapter outlines principles for the activity design, the tinkering space, and the facilitation practices. The authors conclude by
This ethnographic case study illustrates what happens when informal educators introduce science concepts in non-scientific contexts, such as a program focused on youth culture and girls’ empowerment. Helping young people find the science in their everyday lives can build science trajectories and identities for youth from backgrounds that are historically underrepresented in the sciences.
Educators in informal science are exploring data visualization as a way to involve learners in analyzing and interpreting data. However, designing visualizations of data for learners can be challenging, especially when the visualizations show more than one type of data. The Ainsworth three-part DeFT framework can help practitioners design multiple external representations to support learning.
This Stocklmayer, Rennie, and Gilbert article outlines current challenges in preparing youth to go into science careers and to be scientifically literate citizens. The authors suggest creating partnerships between informal and formal education to address these challenges in school.
Vossoughi and Bevan (2014) conducted a literature review of educational research on making and tinkering. They considered what was known about learning opportunities for young people afforded by high-quality tinkering and making experiences. Specifically they reviewed the historical roots of making, the emerging design principles that characterized tinkering and making programs, the pedagogical theories and practices that lead to supportive and collaborative learning environments, as well as the possibilities and tensions associated with equity-oriented teaching and learning.
The overall objective of this planning project was to examine the potential effectiveness of the Signing Science Pictionary (SSP) in increasing the ability of parents and their deaf and hard of hearing children to engage in informal science learning. To achieve this objective, research and development included four goals. 1) Design several SSP-based activities to help family members engage in informal science learning. 2) Examine the potential effectiveness of the SSP in increasing family member’s signed science vocabulary. 3) Find out about the potential effectiveness of the SSP in
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
This project brings real scientific research into the public domain by establishing a research laboratory in a museum setting where visitors not only enroll in the study, they help shape it through their work as citizen scientists. Findings from the study will increase the public understanding of how genetic research translates into meaningful personal information that can be used to better understand personal health risks and opportunities. In a community-based participatory research laboratory, school-aged children and their families will participate in an authentic research project on the genetics of taste. In a series of simple but highly specific taste tests, participants will learn which gene variations they possess and how these variations influence how they taste foods. Taste function has been increasingly linked to human health, in that variability in taste sensation correlates with, and may in part be causal for, major health problems, including cardiovascular disease and obesity. Interactive exhibit components will inform participants about the scientific process, the principles of genetics, the human genome project and genetic variation. Teaching the public about their genetic profile and its influence on taste may have a positive impact on major health threats such as cardiovascular disease and obesity. The data collected from museum visitors who choose to enroll in the study will be sent to the museum's academic partners for further analysis and inclusion in their ongoing research analysis and publications. This laboratory experience not only engages and educates the public, but also advances the research enterprise and offers a vivid model for how to translate research into the public domain.
This project will introduce students ages 8-14, including underserved students; their teachers and families; and the general public to three biomedical research areas inspired by NIH's Roadmap for Medical Research: biological pathways, bioinformatics and nanomedicine. These areas are unfamiliar to many adults and are not introduced in science curricula. Using the metaphor of a hardware store (i.e., building materials, tools, parts, home repair projects), the project will introduce families, students and teachers to three ideas: (1) The body maintains and repairs itself at the molecular, cell, tissue, organ and system levels; (2) Biomedical researchers are uncovering new complexities at the molecular level that can increase our understanding of how the body works; and (3) Developments in nanomedicine can lead to discoveries and treatments. In a hardware store theater and workshop space and in a virtual hardware store, the project will develop and present demonstrations and basic- and intermediate-level labs (for 2nd- and 6th-grade students or families); train museum staff and interns to present the programs; offer orientation workshops to teachers from Title I schools; develop a teacher's guide; conduct outreach in middle schools; engage scientists to talk about their work and help them communicate with the public; and create a manual of materials and activities for other science centers. The evaluation plan will include formative research on activities and assessment of how well repair metaphors facilitate understanding of clinical issues. A team of scientists, museum staff, science teachers, and biology and medical students will guide the development of education components.