What is the relationship between experiences in informal settings and students’ understanding of and attitudes toward science? By analysing existing data sets, Suter finds that science museum attendance has an effect—albeit a small one—on student achievement.
The adoption of the Next Generation Science Standards means that many educators who adhere to model-based reasoning styles of science will have to adapt their programs and curricula. In addition, all practitioners will have to teach modeling, and model-based reasoning is a useful way to do so. This brief offers perspectives drawn from Lehrer and Schauble, two early theorists in model-based reasoning.
This literature review raises questions about how scientific argumentation is taught in schools. Manz argues that argumentation needs to be situated in real scientific questions and practices and makes suggestions for how to make argumentation an authentic science activity for students.
DATE:
TEAM MEMBERS:
Sara Heredia
resourceresearchProfessional Development, Conferences, and Networks
In this research article, Allen and Penuel investigate how science teachers make decisions about implementation of reform based on their understanding of coherence between professional development and the standards, curriculum and assessment in their local context. This research will support ISE that design and facilitate science teacher professional development.
Informal science educators are seeking ways to support scientific reasoning. This study of touch tanks at four different museums found that, although the exhibits were not designed to do so, they supported families in engaging in scientific reasoning practices. Specifically, they engaged family members in making claims, seeking evidence, devising tests, seeking information, testing claims, and challenging claims made by others.
Many research interventions may show initial positive results, but studies show that these results tend to fade when research structures and supports are removed from the local contexts. In this paper, Gutierrez and Penuel make the case for rethinking what is meant by “rigor” in educational research. To drive truly meaningful and sustainable educational improvement efforts, there is a need for jointly negotiated research that integrates the perspectives, ideas, work, practical considerations, and analysis of educational practitioners. The authors argue that standards for rigorous research
Researchers have described the inquiry process as involving five Es: engage, explore, explain, elaborate, and evaluate. Designed to facilitate the process of conceptual change in science, the 5E model can help students at almost any level engage in scientific practices. This brief correlates the 5E framework outlined by Bybee and colleagues with the science practices described in the Framework for K–12 Science Education.
This Barron and Bell article provides a foundational overview for how “cross-setting learning” can equitably engage all youth across formal and informal educational contexts. The paper offers: 1) a review of research; 2) descriptions of supports and challenges to cross-setting learning, including learner interest and identity; and 3) suggestions for research and assessments that capture learning for underrepresented youth.
The field of informal science education has embraced “making” and design activities as a powerful approach to engaging learners. This chapter by Blikstein finds that in order to create disruptive spaces where students can learn STEM, design and build inventive projects, educators . This paper provides theoretical background and concrete cases that illuminate program design and implementation issues related to making.
Petrich, Wilkinson, and Bevan (2013) explore three areas of design principles related to tinkering. The authors share their thinking related to the activity design, environmental design, and facilitation practices involved in creating and supporting rich tinkering experiences for museumgoers. They wrote a chapter on tinkering, which describes how the group initiated, cultivated, and facilitated a making and tinkering space on the floor of a museum. Specifically the chapter outlines principles for the activity design, the tinkering space, and the facilitation practices. The authors conclude by
This ethnographic case study illustrates what happens when informal educators introduce science concepts in non-scientific contexts, such as a program focused on youth culture and girls’ empowerment. Helping young people find the science in their everyday lives can build science trajectories and identities for youth from backgrounds that are historically underrepresented in the sciences.
Educators in informal science are exploring data visualization as a way to involve learners in analyzing and interpreting data. However, designing visualizations of data for learners can be challenging, especially when the visualizations show more than one type of data. The Ainsworth three-part DeFT framework can help practitioners design multiple external representations to support learning.