In this review paper, Oliver calls for greater cross-pollination between neuroscience research and educational practice. She asks, “What can educators learn from an understanding of educational neuroscience?”
This article discusses intellectual activities in African American culture that privilege mathematical thinking. It is a helpful reference for educators and researchers who want to shift from deficit-oriented perspectives about non-dominant or marginalized groups’ performance to additive perspectives that build on out-of-school cultural knowledge and practices to support student learning in school. The authors suggest how educators might value forms of mathematical thinking that are usually not recognized in school. This recognition can support diverse students’ participation and achievement
This chapter discusses variation in the organization of children’s involvement in cultural activities. In particular, we examine three widespread cultural traditions that organize children’s learning and participation in cultural activities: intent community participation, assembly-line instruction, and guided repetition. We argue that investigating the organization of children’s participation in routine activities offers a way to address the dynamic nature of repertoires of cultural practices—the formats of (inter)action with which individuals have experience and may take up, resist, and
DATE:
TEAM MEMBERS:
Barbara RogoffLeslie MooreBehnosh NajafiAmy DexterMarciela Correa-ChavezJocelyn Solis
Traditionally, collaborative technologies are intended to directly support joint, collaborative activity, taking their cues from communication and media. Here, empirical findings are presented about the types of information needs associated with the formation of a knowledge-building community among professional learning technology researchers. Several issues are outlined in designing, facilitating, supporting, and measuring knowledge-building activity in such as community of practice. It is argued that, rather than communication tools, a knowledge-building community is better served by
The goal of this chapter is to provide an overview of important aspects of human learning that are particularly relevant to educators, including learning across settings and lifelong learning.
This chapter discusses learning through the manipulation of three-dimensional objects. The opportunity to touch and interact with objects is helpful for young children as they attempt to understand abstract concepts and processes. How might parents guide children in coming to understand the complex and abstract symbolic nature of representational objects?
“Scaling up” involves adapting an innovation successful in some local setting to effective usage in a wide range of contexts. In contrast to experiences in other sectors of society, scaling up successful programs has proved very difficult in education. In this chapter, Chris Dede discusses the challenges in creating scalable and sustainable educational interventions.
"Let's Talk" will bring together professionals who are engaged in facilitating, evaluating or studying dialogue in STEM and history-based institutions for a symposium in Summer of 2015 structured as a 'meta-conversation' about what we know about dialogue. The project addresses the lack of a generalizable body of knowledge about dialogue, the need for instructional models and theory to inform the use of Dialogue programming, and the opportunity to prepare future museum professionals. Co-PI's: Kris Morrissey and Robert Garfinkle. Key activities include: Research Synthesis Paper; Symposium of professionals across STEM and history-based museums; Development of theory-based resources.
Computer-supported collaborative learning (CSCL) is an emerging branch of the learning sciences concerned with studying how people can learn together with the help of computers. As we will see in this essay, such a simple statement conceals considerable complexity. The interplay of learning with technology turns out to be quite intricate. The inclusion of collaboration, computer mediation, and distance education has problematized the very notion of learning and called into question prevailing assumptions about how to study it.
DATE:
TEAM MEMBERS:
Gerry StahlTimothy KoschmannDan Suthers
In this chapter we explore how people build new theories in the context of collaborative scientific thinking. As illustrated by many of the chapters in this volume, our default notion of "scientific thinking" has changed from that of the lone scientist or student toiling away on a magnum opus or in the laboratory, to that of people working as part of collaborative groups who negotiate goals for the task, co-construct knowledge, and benefit from the diverse prior knowledge that each collaborator brings to the table. In some ways, conceptualizing scientific thinking as fundamentally
When designing programs for science learning, it is important to consider that children's experiences with science begin years before they encounter science in the classroom. Children's developing understanding of science begins in their everyday activities and conversations about the natural and technical world. Children develop "scientific literacy" as they begin to learn the language of science (e.g., concepts such as "gravity" or "metamorphosis"), the kind of causal explanations that are used in scientific theories (e.g., the day-night cycle results from the rotation of the earth), and the
This paper describes a framework for studying and evaluating learning environments which contextualize school science content within a larger real-world scientific endeavor, such as carrying on a space mission. A central feature of this framework is its incorporation of recent research on content-specific personal interest. This framework was developed and tested in a pilot evaluation of the Challenger Learning Center's M.A.R.S. (Mission Assignment: Relief and Supply) learning activity. This activity consists of a series of classroom activities which prepare students for a simulated Mars