Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
The project will develop and research an after-school program designed to engage rural, Latinx youth in design thinking and math through making. Making is a learner-centered environment where participants design, create, and develop projects. Latinx individuals are underrepresented in the STEM workforce. The project will engage Latinx youth during the critical middle school years when young people make choices that affect their futures. The project will work with community members, after school staff, and youth as co-designers to develop and pilot the complete after school program. The program will involve Latinx youth who live in the agricultural regions of the Southwest United States with the goal of developing agency and positive identity, as makers, mathematical doers and users, and active community members. They will engage in developmentally appropriate mathematics, such as the volume and surface area of geometric shapes, within the context of informal learning projects. The program will comprise four semester-long after school projects, involving participants for 2-4 hours each week, during which time youth will design and create objects to address typical community challenges. Each project will incorporate smaller modules to enable youth with different attendance needs to participate. Real community problems (e.g., drought) and solution paths (e.g., water catchment system) will motivate the making and the mathematics. The program, co-designed in partnership with the Cesar Chavez Foundation, promises to reach 100,000 youth over the next decade. Because the program can serve as a model for others with similar goals, this reach has the potential to be expanded in many other communities.
Project research will address a gap in the current literature on mathematics, making, and community membership. The project connects community mathematics—the rich mathematical knowledge and practices drawn from communities—to educational making to both enrich understanding of school mathematics and aid in developing students’ positive mathematical and cultural identities. The project will also result in a model of professional development that can be used and studied by after school programs and researchers, contributing to the limited body of knowledge of professional development on STEM making for after school facilitators. The research design for this project will follow a mixed methods approach where quantitative and qualitative data collection and analysis will occur simultaneously. Results of both strands will be brought together at the interpretation and reporting level to compare and bring out the convergence, divergence, or complementarity of findings. The research will take place in two stages (co-design and pilot) over 3 years, with an additional half year for developing communications of the findings. Research will address the following questions: (1) What are the key features of projects for integrating community mathematics, school mathematics understanding, and design/making? (2) How do facilitators support the youth in engaging in program activities? (3) What math content and practices do youth learn through participation in program activities? and (4) How do youth’s agency and identity as makers, mathematics doers and users, and community members change with participation in the program? Program research and resources will be disseminated nationally through the Cesar Chavez Foundation and by sharing project research and resources through publications and conference presentations reaching researchers, educators, and program developers.
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We provide results of a qualitative research study conducted with the Mathematics, Engineering, Science Achievement (MESA) program, an informal learning environment that has proven to be effective in recruiting, retaining and encouraging
DATE:
TEAM MEMBERS:
Cameron DensonChandra Austin StallworthChristine HaileyDaniel Householder
The Montana Girls STEM Collaborative brings together organizations and individuals throughout Montana who are committed to informing and motivating girls to pursue careers in STEM – Science, Technology, Engineering and Mathematics. The Collaborative offers professional development, networking and collaboration opportunities to adults who offer and/or support STEM programs for girls and other youth typically under-represented in STEM. The vision of Montana Girls STEM is that every young person in Montana has the opportunity to learn about STEM careers and feels welcome pursuing any dream they
DATE:
TEAM MEMBERS:
Suzi TaylorRay CallawayCathy Witlock
Researchers examined whether engineering activities and lessons can help students apply science and math content in real-world contexts and gain insights into the professional activities and goals of engineers.
Through the Scientists for Tomorrow pathways project, The Science Institute at Columbia College in Chicago will test a model for preparing non-science major, pre-service elementary school teachers to deliver three ten-week informal science education modules to youth in after school programs. The initiative will bring engineering concepts, environmental science, and technology to approximately 240 urban Chicago youth (ages 10-14 years old) and their families. The Science Institute will partner with eight minority serving community based organizations and the Museum of Science and Industry, the Field Museum, and the Garfield Park Conservatory Alliance to develop and implement all aspects of the program. The goals of the program are two-fold. First, the project will develop and implement a high-quality STEM based afterschool program for under-represented youth in STEM. Second, the professional development and experience implementing the curriculum with youth in the local communities and within informal science education (ISE) institutions will extend and enrich the pre-service teachers\' STEM content and pedagogical knowledge base and better prepare them to teach science in formal and informal settings. Thirty teachers will receive specialized professional development through a seminar, course, and other support mechanisms in order to best support the implementation of the modules, while building their STEM content expertise, confidence, and pedagogical knowledge. Each module has a different STEM content focus: alternative energy (fall), the physics and mathematics of sound and music (winter), and environmental science (spring). At the end of each module, a culminating youth-led presentation will be held at one of the partnering Chicago museums. Youth will be encouraged to participate in all three modules. The formative evaluation will be conducted by the Co-Principal Investigators. Pre and post assessments, artifact reviews, and interviews will be used for the summative evaluation, which will be conducted by an external evaluator at the Illinois Institute of Technology. The project deliverables include: (a) a teacher training program, (b) an after school curriculum, and (c) media tools - DVDs, website. Over the grant period, the project intends to reach 120 youth each year, over 100 family and community members, and 30 teachers. The larger impact of this project will be the development of a scalable model for bringing relevant STEM content and experiences to youth, their families, and non-science major pre-service teachers. As a result of this project, a cadre of pre-service teachers will have: (a) increased their STEM content knowledge, (b) gained experience presenting STEM content in informal settings, (c) learned effective approaches to deliver hands-on STEM content, and (d) learned to use museum and other ISE resources in their teaching. In fact, after the grant period nearly half of the teachers will continue to work at the centers as part-time instructors, fully supported by the partnering community centers.
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
This Science Learning+ project will develop research-and-practice activities to explore how an integrated art, STEM, and society (what we refer to as STEAM) approach can expand science engagement and learning of youth aged 15-19, from low-income and non-dominant cultural communities. The project will review current knowledge, practice, and trends related to underrepresented youth, STEAM, and science engagement. The review will be used to develop: (1) A cross-setting research framework for investigating the relationship between informal STEAM learning experiences and young people's developing engagement with science. (2) Design principles for out-of-school STEAM programs that have proven effective in cultivating youth engagement with science and making relevant cross-setting connections. (3) Practitioner-friendly program evaluation tools that integrate findings from current research and practice related to cross-setting science learning of young adults especially non-dominant youth as it relates to STEAM learning experiences.
This is a poster from the 2014 AISL PI Meeting in Washington, DC. It describes KC Empower, a project that explores after school science for children with disabilities.
Dabney and colleagues examine the relationship between university students’ reported interest in STEM careers and their participation in out-of-school time science activities during middle and high school. The researchers examined the specific forms of OST science activities associated with STEM career interest and the correlations among those forms.