Connected Science Learning is a journal around which all science, technology, engineering, and math (STEM) educators can gather. The National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC) have partnered on this National Science Foundation (NSF)–funded project to leverage our extensive combined reach across the formal and informal STEM educator communities. NSTA represents about 50,000 K–12 science educators, while ASTC member science centers and museums are in communities across the globe, reaching 100 million visitors per year, many of whom are
Today institutional and project leaders are faced with two critical dilemmas: (1) building the capacity to respond to the increasing evaluation and accountability demands of funders and stakeholders; and (2) managing the complexities of interconnected, multifaceted, ongoing institutional and cross-institutional work. These challenges require leaders to go beyond traditional approaches to professional development and consider the complex ways that systems of professionals communicate, interact, and evolve. This report draws from three years of research as part of the National Science Foundation
Over the past ten years, investments in infrastructure for informal STEM education and science communication have resulted in significant growth in the number and variety of resources and depth of expertise available to members of the STEM research community wishing to develop outreach, engagement and broader impacts activities. This report/white paper recounts some of the developments that led to the existing synergy between Informal STEM Education (ISE), science communication, and STEM research, provides examples of infrastructure and resources that support this work, and identifies areas of
Our complex and changing world demands an adaptable workforce that is prepared to collaboratively reason through tough problems and come up with creative solutions to the challenges of tomorrow. STEM (science, technology, engineering, and math) educational opportunities cultivate students’ curiosity and creativity while teaching them to work as a team, base their reasoning on evidence, and solve problems through experimentation. Our students must gain the critical thinking abilities and other transferrable skills offered by STEM to be prepared for the unknown challenges and opportunities of
DATE:
TEAM MEMBERS:
STEM Education Coalition Policy Forum
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Grant funds for this project support research into the needs and preferences of the audiences to assemble content and test two pilot issues of a peer-reviewed journal supporting innovative
advances that work at the intersection of formal and informal science, technology, engineering, and math (STEM) education.
In 2007, global investments in R&D have increased by 7% on the previous year and have reached an absolute historical peak, exceeding for the first time the threshold of 1,100 billion dollars (calculated in the hypothesis of a purchasing power parity between the currencies). The world invests in scientific research and technological development 2.1% of the wealth it produces. At the same time, there has been an increase in the exchange of high added-knowledge value goods and high tech represents now the most dynamic sector of the world economy.
DATE:
TEAM MEMBERS:
Pietro Greco
resourceresearchProfessional Development, Conferences, and Networks
In 2007 the Life Long Learning Programme (previously Socrates) of the European Commission has started. The programme offers to teachers, educators and policy-makers of the education sector the opportunity to be funded for participating at various training courses organized in all EU countries by international networks and projects. The SEDEC course will be included in that list in 2008. The article shortly present how to ask for a grant.
These blog posts were written by researcher Andee Rubin in 2013 & 2014 as a way to provide technical assistance to investigators planning to carry out research in informal settings. The first post provides a history of human subjects protection as it emerged from medical research and thoughts about the application of these principles to informal settings. The second discusses the set of federally-mandated rules that Institutional Review Boards (IRBs) use to protect human subjects and describes how and when researchers need to seek IRB approval for their work. The third describes techniques for
Scientific literacy is an important educational and societal goal. Measuring scientific literacy, however, has been problematic because there is no consensus regarding the meaning of scientific literacy. Most definitions focus on the content and processes of major science disciplines, ignoring social factors and citizens’ needs. The authors developed a definition of scientific literacy for the California 4-H Program from the citizen’s perspective, concentrating on real-world science-related situations. The definition includes four anchor points: science content; scientific reasoning skills
John Ziman with his old-fashioned ways, was a real British gentleman of the colonies. Born and raised in New Zealand, Ziman belonged to that large group of men and women that went back to their fathers’ land in the last century from the Commonwealth countries. In many cases, they were individuals with an outstanding intellect and, therefore, a real tresure trove for Great Britain, which drew from those remote places not only gems, tea, perfumes and raw materials, but also enlightened minds and reliable personalities.
The Royal Society published in late June a report entitled «Science Communication. Survey of factors affecting science communication by scientists and engineers». It is an in-depth survey on the communication addressed to non-specialist audiences that was carried out interviewing a wide and representative sample of UK scientists and engineers.