This report describes a research study conducted by User Experience Research Consulting, Inc. (UXR) contracted by the iSaveSpecies team that would inform the development of online extended engagement conservation activities to bridge and support zoo visitors, onsite experiences with computer-based conservation stations. The study focused on two key concepts: engagement and conservation. Across three phases, researchers investigated visitor attitudes, perceptions, and experiences related to conservation action through the iSaveSpecies system and in their personal lives, and their ideas and
The digital revolution has transformed how young people discover and pursue their interests; how they communicate with and learn from other people; and how they encounter and learn about the world around them. How can we identify best practices for incorporating new media technologies into learning environments in a way that resonates with youth, including their interests, goals, and the ways they use technology in their everyday lives? How do we resolve the need to document and recognize informal STEM learning and connect it to formal education contexts? What strategies can be developed for inspiring and tracking student progress towards the learning goals outlined in the Next Generation Science Standards (NGSS)? These questions are the underlying motivation for this CAREER program of research. Digital badges represent a specific kind of networked technology and have been touted as an alternative credentialing system for recognizing and rewarding learning across domains, both inside and outside of formal education contexts. While there is considerable enthusiasm and speculation around the use of digital badges, the extent to which they succeed at empowering learners and connecting their learning across contexts remains largely untested. This project seeks to fill this gap in knowledge. The approach taken for this program of study is a three phased design-based research effort that will be focused on four objectives: (1) identifying design principles and support structures needed to develop and implement a digital badge system that recognizes informal STEM learning; (2) documenting the opportunities and challenges associated with building a digital badge ecosystem that connects informal learning contexts to formal education and employment opportunities; (3) determining whether and how digital badges support learners' STEM identities; and (4) determining whether and how digital badges help learners to connect their informal STEM learning to formal education and employment opportunities. In Phase 1, an existing prototype created in prior work at Seattle's Pacific Science Center will be developed into a fully functional digital badge system. In Phase 2, the PI will also work collaboratively with higher education stakeholders to establish formal mechanisms for recognizing Pacific Science Center badges in higher education contexts. In Phase 3, the badge ecosystem will be expanded and students' use of and engagement with badges will be tracked as they apply to and enter college. The project involves high school students participating in the Discovery Corps program at the Pacific Science Center, undergraduate and graduate students at the University of Washington, and stakeholders in the K-12 and higher education community in Seattle. Educational activities integrated with this program of research will support: (1) mentoring University of Washington students throughout the project to develop their skills as practice-oriented researchers; (2) incorporating the research processes and findings from the project into university courses aimed at developing students' understanding of the opportunities and challenges associated with using new media technologies to support learning; and (3) using the research findings to develop educational outreach initiatives to support other informal STEM learning institutions in their use of digital badges.
Tornado Alley is a giant screen adventure that follows renegade filmmaker Sean Casey and the scientists of VORTEX2, the largest tornado research project ever assembled, on their epic missions to encounter one of Earth’s most awe-inspiring events: the birth of a tornado. Program components included the giant screen film; a Web site; educators’ guides and resources for classroom and informal learning; and professional development sessions utilizing cyberinfrastructure to facilitate remote interactions between educators and researchers performing actual data manipulations. In addition, an
In this chapter we present and discuss the results and reflections based on our recent developments and experiences in Europe and in Asia regarding how novel educational design patterns, mobile technologies and software tools can be combined to enhanced learning. We propose and recommend possible directions for the design of future educational activities and technological solutions that can support seamless learning. To the end, we discuss how the notion of seamless learning could be used to tackle some of the challenges our educational systems are facing in connection to the introduction of
DATE:
TEAM MEMBERS:
Marcelo MilradLung-Hsiang WongMike SharplesGwo-Jen HwangHiroaki Ogata
This article takes a critical look at three pervasive urban legends in education about the nature of learners, learning, and teaching and looks at what educational and psychological research has to say about them. The three legends can be seen as variations on one central theme, namely, that it is the learner who knows best and that she or he should be the controlling force in her or his learning. The first legend is one of learners as digital natives who form a generation of students knowing by nature how to learn from new media, and for whom “old” media and methods used in teaching/learning
DATE:
TEAM MEMBERS:
Paul KirschnerJeroen van Merrienboer
Several major international studies recognize that children (and adults) pursue lifelong STEM interests and understandings, in and out of school, using a variety of community resources and networks. In most communities though, these resources are not well connected with one another, nor is there understanding on the ground of how children and adults can best access and use these resources to support their lifelong STEM interests and learning. The SYNERGIES project is predicated on the assumption that better understanding how 10-14 year old youth become interested and engaged with STEM (or not) across settings, time and space, will make possible a more coordinated network of educational opportunities, involving many partners in and out of school, and in the process, create a community-wide, research-based educational system that is more effective and synergistic. Using the under-resourced Parkrose community of Portland, Oregon as a case-study, the SYNERGIES team has been longitudinally studying the STEM interest and participation pathways of 200 youth for four years. Data from this investigation formed the foundation for a community-wide, multi-year STEM education improvement plan jointly developed by the schools, after-school providers, museums, libraries, parks, colleges, parents and businesses.
The LTER Network is an innovative platform for training the next generation of natural scientists in collaborative, integrative, long-term research in ecology. An important objective of the network is to share knowledge with other communities. The LTER Network Office addresses this objective by managing a Communication and Outreach program that targets key communities—scientists, policy makers, educators and students, and the mass media as a proxy of the rest of the non-specific audiences—and maintain strategic partnerships and collaborations that provide improved access to these communities.
The mission of QESST public outreach is to provide a platform for engaging the community; students, parents, teachers, and the general public; in discussions about solar energy. Although there is a growing interest in advances of solar energy, many misconceptions prevail amongst the general community. Community outreach serves as a mechanism for engaging people and drawing them in. It is often the hook that creates interest in parents who pass that interest onto their children, or lures young students into more formalized QESST programs. Our outreach events range in scale from small workshops, large university wide open houses, and participation in educational television.
The focus of this paper is to turn our attention to the arts as an understudied area within the computer-supported collaborative learning community and examine how studying the learning of arts and programming can open new avenues of research. We document, describe, and analyze urban youths’ media arts practices within the context of the design studio, particularly by focusing on how collaboration, computation, and creativity play out within this context. We utilize a mixed methods design that draws upon three approaches: (1) participant observations; (2) media arts object analyses; and (3)
There can be a mistaken impression that the new vision for K-12 science education is only relevant to classroom science instruction. But youth frequently engage in powerful science and engineering activities that take place after or outside-of-school. They learn STEM content, engage in STEM practices, and develop an understanding of how STEM is used in the world. To capitalize on those assets, educators and other stakeholders should learn about, leverage, and broker connections for youth across the STEM learning experiences available in and out of school.
This award-winning website includes a comprehensive collection of standards-based, space science education materials. Site visitors can explore a variety of resources such as A Hubble Gallery, Online Explorations, Tonight’s Sky, and Star Witness News science content readings. The “For Educators” side of site includes support materials such as science background information and overview pages that provide strategies for using Amazing Space activities in educational settings.
DATE:
TEAM MEMBERS:
Space Telescope Science InstituteBonnie Eisenhamer
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE:
-
TEAM MEMBERS:
Katherine PerkinsDaniel SchwartzMichael DubsonNoah Podolefsky