This report summarizes findings from a research-practice partnership investigating STEM-rich making in afterschool programs serving young people from communities historically under-represented in STEM. The three-year study identified key dimensions related to (1) How STEM-Rich Making advances afterschool programmatic goals related to socio-emotional and intellectual growth for youth; (2) Key characteristics of programs that effectively engage youth historically marginalized in STEM fields; and (3) Staff development needs to support equity-oriented STEM-Rich Making programs.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project will provide much needed empirical results on how to promote children’s STEM engagement and learning in informal science education settings. The project will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Indianapolis: City as a Living Laboratory (NSF Grant #DRL-1323117) examines how different public art mediums can serve as conduits for informal science learning at a city-wide scale.
The L.C. Bates Museum will provide 1,700 rural fourth grade students and their families museum-based STEAM (Science, Technology, Engineering, Art, and Mathematics) educational programming including integrated naturalist, astronomy, and art activities that explore Maine's environment and its solar and lunar interactions. The project will include a series of eight classroom programs, family field trips, TV programs, family and classroom self-guided educational materials, and exhibitions of project activities including student work. By bringing programs to schools and offering family activities and field trips, the museum will be able to engage an underserved, mostly low-income population that would otherwise not be able to visit the museum. The museum's programming will address teachers' needs for museum objects and interactive explorations that enhance student learning and new Common Core science curriculum objectives, while offering students engaging learning experiences and the opportunity to develop 21st century leadership skills.
The Urban Libraries Council (ULC) and the National Summer Learning Association (NSLA) will conduct a fifteen-month project designed to increase resources, inspire innovation, and build national awareness of public libraries as leaders in summer learning. ULC and NSLA will increase knowledge of emerging models; deepen connections between library, summer learning, and school leaders; and help build national visibility with local government, school, and library leaders of the role and value of public libraries in summer learning. Project activities include: a national scan of research-based practices, including a survey, site visits, interviews, and a focus group; identification of emerging models that incorporate library-school partnerships as well as science, technology, engineering, arts, and math (STEAM) learning, connected learning, and family learning; development of an online resource guide; and the building of a library-based peer learning network.
The Free Library of Philadelphia Foundation will create on-the-floor makerspaces in libraries in underserved neighborhoods in North Philadelphia. These spaces will help local residents of all ages to gain access to technology and participatory education, and encourage creative applications and collaborative projects. Mentors will guide multigenerational community members as they create cross-disciplinary, interest-driven electronic art projects; build interest and knowledge in STEAM (Science, Technology, Engineering, Art, and Mathematics), and use tools and skills to create and share artifacts that reflect their identities and communities. Through the act of making, participants of all ages will have the opportunity to design meaningful digital and physical objects that capture the richness and diversity of their neighborhoods. These place-based, interest-driven, and mentor-guided makerspaces will provide a replicable, scalable model for libraries and museums nationally.
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
Indianapolis / City as Living Laboratory (I/CaLL) is a city-wide civic collaboration engaging in cross-sector research that builds on prior research in informal science learning in public settings. It extends research in place-based and service learning traditions, and uses the city itself as an informal science learning (ISL) environment for Science and Engineering for Environmental Sustainability learning outcomes. This project is creating place-based science learning experiences as part of public spaces in Indianapolis and establishes the next generation of urban science museums that increase opportunities for learning. The project will develop a self-sustaining program for art/science collaborations as they inaugurate city-sanctioned changeable installations at I/CaLL sites. Data from the project will be used to inform ISL professionals at museums throughout the community and around the country. Thousands of volunteers and their families will help create I/CaLL spaces, engage with communities, and serve as research participants connecting with science learning through site development. The unprecedented scale of this project provides a full measure of informal science service learning at a city scale, offering data that can change how science learning is measured, how people from all walks of life develop science literacy as part of their social public experience, and embodying the concept of the city as a living science learning lab. Broader impacts include the development of the city as an informal science learning environment that will become a new standard for thinking about what cities as cultural units can become as we build a resilient Science and Engineering culture for Environmental Sustainability.
Nationally, there is tremendous interest in enhancing participation in science, technology, engineering, and mathematics (STEM). Providing rich opportunities for engagement in science and engineering practices may be key to developing a much larger cadre of young people who grow up interested in and pursue future STEM education and career options. One particularly powerful way to engage children in such exploration and playful experimentation may be through learning experiences that call for tinkering with real objects and tools to make and remake things. Tinkering is an important target for research and educational practice for at least two reasons: (1) tinkering experiences are frequently social, involving children interacting with educators and family members who can support STEM-relevant tinkering in various ways and (2) tinkering is more open-ended than many other kinds of building experiences (e.g., puzzles, making a model airplane), because it is the participants' own unique questions and objectives that guide the activity. Thus, tinkering provides a highly accessible point of entry into early STEM learning for children and families who do not all share the same backgrounds, circumstances, interests, and expertise. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The project will take place in the Tinkering Lab exhibit at Chicago Children's Museum. The research will investigate how reflective interactions between parents and children (ages 6-8) during tinkering activities ultimately impact child engagement in STEM. Design-based research (DBR) is well-suited to the iterative and contextually-rich process of tinkering. Using a DBR approach, researchers and museum facilitators will be trained to prompt variations of simple reflection strategies at different time points between family members as a way to strengthen children's engagement with, and memory of these shared tinkering events. Through progressive refinement, each cycle of testing will lead to new hypotheses that can be tested in the subsequent round of observations. The operationalization of study constructs and their measurement will come organically from families' activities in the Tinkering Lab and will be developed in consultation with members of the advisory board. Data collection strategies will include observation and interviews; a series of coding schemes will be used to make sense of the data. The research will result in theoretical and practical understanding of ways to enhance STEM engagement and learning by young children and their families through tinkering. A diverse group of at least 350 children and their families will be involved. The project will provide much needed empirical results on how to promote STEM engagement and learning in informal science education settings. It will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children. This research is being conducted through a partnership between researchers at Loyola University of Chicago and Northwestern University and museum staff and educators at the Chicago Children's Museum.