This handout was prepared for the Climate Change Showcase at the 2019 ASTC Conference in Toronto, Ontario. It highlights resources available on InformalScience.org related to the topic of climate change.
In this poster, the Center for Research on Lifelong STEM Learning shared lessons learned from a study that used audio and video data from GoPros to investigate the entry characteristics of zoo and aquarium visitors and how those characteristics played out in terms of decision-making behaviors and meaning-making talk during a visit.
The poster presents information about a research study where we used video-based data collection to investigate how framing of interpretive signage influences visitors’ talk and behaviors at exhibits. The poster shared details of our methods as well as lessons learned from using cameras for capturing video of visiting groups.
In this paper we share an emerging analytical approach to designing and studying STEAM programs that focuses on how programs integrate the respective epistemic practices—the ways in which knowledge is constructed—of science and art. We share the rationale for moving beyond surface features of STEAM programs (e.g., putting textiles and electronics on the same table) to the disciplinary-specific ways in which participants are engaged in creative inquiry and production. We share a brief example from a public STEAM event to demonstrate the ways in which this approach can foster reflection and
Participants in this study reported a variety of resources used in the past to learn to code in Apex, including online tutorials, one-day classes sponsored by Salesforce, and meet-up groups focused on learning. They reported various difficulties in learning through these resources, including what they viewed as the gendered nature of classes where the men already seemed to know how to code—which set a fast pace for the class, difficulty in knowing “where to start” in their learning, and a lack of time to practice learning due to work and family responsibilities. The Coaching and Learning Group
Participants in this study reported a variety of resources used in the past to learn to code in Apex, including online tutorials, one-day classes sponsored by Salesforce, and meet-up groups focused on learning. They reported various difficulties in learning through these resources, including what they viewed as the gendered nature of classes where the men already seemed to know how to code—which set a fast pace for the class, difficulty in knowing “where to start” in their learning, and a lack of time to practice learning due to work and family responsibilities. The Coaching and Learning Group
Grassroots women's learn-to-code groups are springing up in many places. This infographic a study of one such group, in which more-knowledgeable "coaches" lead novice "learners" in learning software programming on the Salesforce platform. This study found that women create such groups to have supportive, non-threatening environments that nuture their learning to build confidence before entering male-dominated software development communities.
RUFF FAMILY SCIENCE is a project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. The project is using a research and design process to create an implementation model and prototype resources (digital media, hands-on activities, and supports for educators) to build new knowledge about the potential for digital media to inspire and support intergenerational science learning among vulnerable families.
WGBH and Education Development Center, Inc. (EDC)
DATE:
TEAM MEMBERS:
Mary HaggertyHeather LavigneJessica AndrewsAlexia RaynalMarion GoldsteinJaime Gutierrez
This paper describes a follow‐up focus group study for the larger Exhibit Designs for Girls' Engagement (EDGE) project. Grounded in Culturally Responsive Pedagogical theory (CRP), the project aimed to understand the relationship between female responsive designs and girls' engagement at STEM exhibits. After developing a Female‐Responsive Design (FRD) Framework and conducting a large‐scale study to determine the most important design attributes for engaging girls at exhibits, the final step involved a qualitative investigation into those design attributes. Four focus groups with 22 girls aged 8
This three-year research and implementation project empowers middle school LatinX youth to employ their own assets and funds of knowledge to solve community problems through engineering. Only 7% of adults in the STEM job cluster are of Hispanic/Latino origin. There is a continuing need for filling engineering jobs in our current and future economy. This project will significantly broaden participation of LatinX youth in engineering activities at a critical point as they make career decisions. Design Squad Global LatinX expands on a tested model previously funded by NSF and shown to be successful. It will enable LatinX youth to view themselves as designers and engineers and to build from their strengths to expand their skills and participation in science and engineering. The project goals are to: 1) develop an innovative inclusive approach to informal engineering education for LatinX students that can broaden their engineering participation and that of other underrepresented groups, (2) to galvanize collaborations across diverse local, national, and international stakeholders to create a STEM learning ecosystem and (3) to advance knowledge about a STEM pedagogy that bridges personal-cultural identity and experience with engineering knowledge and skills. Project deliverables include a conceptual framework for a strength-based approach to engineering education for LatinX youth, a program model that is asset based, a collection of educational resources including a club guide for how to scaffold culturally responsive engineering challenge activities, an online training course for club leaders, and a mentoring strategy for university engineering students working with middle school youth. Project partners include the global education organization, iEARN, the Society of Women Engineers, and various University engineering programs.
The research study will employ an experimental study design to evaluate the impact on youth participating in the Design Squad LatinX programs. The key research questions are (1) Does participation increase students' positive perceptions of themselves and understanding of engineering and global perspectives? (2) To what extent do changes in understanding engineering vary by community (site) and by student characteristics (age, gender, ethnicity)? (3) Do educators and club leaders increase their positive perceptions of youths' funds of knowledge and their own understanding of engineering? and (4) Do university mentors increase their ability to lead informal engineering/STEM education with middle school youth? A sample from 72 local Design Squad LatinX clubs with an enrollment of 10-15 students will be drawn with half randomly assigned to the participant condition and half to the control condition. Methods used include pre and post surveys, implementation logs for checks on program implementation, site visits to carry out observations, focus groups with students and interviews with adult leaders. Data will be analyzed by estimating hierarchical linear models with observations. In addition, in-situ ethnographically-oriented observations as well as interviews at two sites will be used to develop qualitative case studies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Mary Haggerty
resourceprojectProfessional Development, Conferences, and Networks
STEAM, the use of art as a context and tool for science education, is currently a hot topic in the science education field. In almost all instances of study and practice, it involves the use of science-themed or science-informed art in science education. As such, it does not take advantage of the majority of artistic output that does not have an obvious connection to science. The National Academies of Sciences, Engineering and Medicine recently called for more research to expand the "limited but promising" evidence that integrating arts and humanities with science education leads to better learning. The goal of this 2.5-day conference is to bring together representatives of both art and science groups to have a shared discussion around how non-scientific art can influence science education in theory, and how we can apply empirical results to the theory. For purposes of this conference, "non-science art" is defined as art that was not inspired by science. Conference attendees will include researchers (art and science education researchers) and practitioners (artists, art museum interpreters, and science educators). The conference will take place during the 2020 Black Creativity exhibition at the Museum of Science and Industry, Chicago. It is anticipated that by holding the conference at that time the audience for the conference and its impact will be informed by more diverse attendance.
The conference will be implemented starting with a pre-conference reading. Attendees will be sent a copy of the white paper from the Art as a Way of Knowing report for background reading and also asked to contribute to a Google Document that describes their various contexts. Each day of the conference will focus on a theme -- state of the field and possibilities and research -- and be comprised of large and small group interactions. Attendees will be invited from the ranks of practitioners, researchers and educators in the art and science education fields; several slots will be available for open (non-invited) participants. Key outcomes include: (a) a summary of all the research that has been conducted on using non-science art in science education, (b) starting points for building a theory on why non-science art can be used in science education; and (c) a list of specific research topics that would help inform, advance, and test the theory. In addition to assessing satisfaction with the conference, evaluation will also include a one-year post conference survey to investigate impact of participation in the conference.
This conference will generate products that will give guidance to both researchers and practitioners who want to use art in science education. These products include a white paper synthesizing the discussion and appendices that include raw transcripts and a bibliography of resources. Another product is a roadmap to create interventions that can be studied, which should lead to a stronger, more rigorous theory of practice about how art can be integrated into science education.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.