Skip to main content

Community Repository Search Results

resource research Exhibitions
The REVEAL project is an NSF funded project to learn about how facilitation impacts family’s experiences of math exhibits. The goal of the project was to iteratively develop and refine a theoretical model of how staff facilitation deepens and extends family mathematical discourse at interactive exhibits. This model underwent rigorous testing and ultimately provided the evidence and research-based tools to support PD efforts for informal STEM educators. As part of this testing the learnings from developing at OMSI (Oregon Museum of Science and Industry, in Portland, Oregon) were applied in an
DATE:
resource research Media and Technology
With support from the National Science Foundation’s Science Learning+ initiative, Twin Cities Public Television (TPT), in St. Paul, MN, in collaboration with a team of researchers in the US and the UK organized a workshop with the title Affinity Spaces for Informal Science Learning: Developing a Research Agenda. Our goal was to develop and refine a set of concepts and issues that will guide future investigations into how participation in online affinity spaces can promote and enable informal science learning. The workshop took place on July 6th and 7th, 2015, ahead of the Games+Learning
DATE:
resource project Public Programs
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
DATE: -
resource research Public Programs
Through a comparative case study, Sheridan and colleagues explore how makerspaces may function as learning environments. Drawing on field observations, interviews, and analysis of artifacts, videos, and other documents, the authors describe features of three makerspaces and how participants learn and develop through complex design and making practices. They describe how the makerspaces help individuals identify problems, build models, learn and apply skills, revise ideas, and share new knowledge with others. The authors conclude with a discussion of the implications of their findings for this
DATE:
TEAM MEMBERS: Kim Sheridan Erica Halverson Breanne Litts Lisa Brahms Lynette Jacobs-Priebe Trevor Owens
resource research Media and Technology
The science education community is buzzing about STEM learning ecosystems, ecologies of learning, and ecological perspectives on learning. You may not know it, but if your teaching involves building on young people’s prior knowledge or making connections between the science curriculum and science in the broader world, your work may already reflect aspects of ecological learning theories. At the heart of an ecological perspective on learning is the need to make connections across formal, informal, and everyday learning. So, what are STEM learning ecologies all about, and how can science
DATE:
TEAM MEMBERS: Bronwyn Bevan
resource research Media and Technology
Connected Science Learning is a journal around which all science, technology, engineering, and math (STEM) educators can gather. The National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC) have partnered on this National Science Foundation (NSF)–funded project to leverage our extensive combined reach across the formal and informal STEM educator communities. NSTA represents about 50,000 K–12 science educators, while ASTC member science centers and museums are in communities across the globe, reaching 100 million visitors per year, many of whom are
DATE:
TEAM MEMBERS: David Evans anthony rock
resource research Public Programs
This chapter reviews four projects that reflect the principles of design-based implementation research (DBIR) in an effort to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with DBIR.The goal of this chapter is to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with design-based implementation research (DBIR). As Penuel, Fishman, Cheng, and Sabelli (2011) described, DBIR entails engaging “learning scientists, policy researchers, and
DATE:
TEAM MEMBERS: Jennifer Russell Kara Jackson Andrew Krumm Kenneth Frank
resource research Public Programs
Design-based research (DBR) is used to study learning in environments that are designed and systematically changed by the researcher. DBR is not a fixed “cookbook” method; it is a collection of approaches that involve a commitment to studying activity in naturalistic settings, many of which are designed and systematically changed by the researcher, with the goal of advancing theory at the same time directly impacting practice. The goal of DBR (sometimes also referred to as design experiments) is to use the close study of learning as it unfolds within a naturalistic context that contains
DATE:
TEAM MEMBERS: Sasha Barab
resource research Public Programs
The authors argue that design-based research, which blends empirical educational research with the theory-driven design of learning environments, is an important methodology for understanding how, when, and why educational innovations work in practice. Design-based researchers’ innovations embody specific theoretical claims about teaching and learning, and help us understand the relationships among educational theory, designed artifact, and practice. Design is central in efforts to foster learning, create usable knowledge, and advance theories of learning and teaching in complex settings
DATE:
TEAM MEMBERS: Eric Baumgartner Philip Bell Sean Brophy Christopher Hoadley Sherry Hsi Diana Joseph Chandra Orrill Sadhana Puntambekar William Sandoval Iris Tabak
resource research Professional Development, Conferences, and Networks
In this paper, the authors synthesize three types of research-practice partnerships (RPPs) for informal learning. The article includes descriptions of example partnerships between local researchers and informal educators from the Hive NYC Learning Network, Community Practice Research Collaboration, and California Tinkering Afterschool Network. The synthesis paper concludes with a review of characteristics commonly found in partnerships in informal science education.
DATE:
resource research Media and Technology
The emerging field of the learning sciences one that is interdisciplinary, drawing on multiple theoretical perspectives and research paradigms so as to build understandings of the nature and conditions of learning, cognition, and development. Learning sciences researchers investigate cognition in context, at times emphasizing one more than the other but with the broad goal of developing evidence-based claims derived from both laboratory-based and naturalistic investigations that result in knowledge about how people learn. This work can involve the development of technological tools, curriculum
DATE:
TEAM MEMBERS: Sasha Barab Kurt Squire
resource research Informal/Formal Connections
The lion's share of my current research program is devoted to the study of learning in the blooming, buzzing confusion of inner-city classrooms. My high-level goal is to transform grade-school classrooms from work sites where students perform assigned tasks under the management of teachers into communities of learning ( Bereiter & Scardamalia, 1989; Brown & Campione, 1990) and interpretation ( Fish, 1980), where students are given significant opportunity to take charge of their own learning. In my current work, I conduct what Collins (in press) refers to as design experiments, modeled on the
DATE:
TEAM MEMBERS: Ann Brown