The dramatic decline in youth interest in science, technology, engineering and mathematics (STEM) during adolescence, both in the USA and internationally, has been a phenomenon of societal concern for several decades. The Synergies project was launched to help deal with this issue. In this paper, we report findings from the first two years of our longitudinal survey research. We sought to understand the nature of the STEM-related interests of 10-/11-year-old youth living in a single urban community and the factors that seem to influence whether these various dimensions of interest increase
The nature of STEM (science, technology, engineering, and mathematics) learning is changing as individuals have unprecedented, 24/7 access to science-related information and experiences from cradle to grave. Today’s science-education opportunities include not only traditional schooling, but also libraries, museums, zoos, aquaria, science centers, and parks and preserves; diverse broadcast media such as television, podcasts, and film; organized youth programs such as 4-H, after-school or summer camps, and special-interest clubs and hobby groups; and an ever-increasing array of digital media
Scientific literacy is an important educational and societal goal. Measuring scientific literacy, however, has been problematic because there is no consensus regarding the meaning of scientific literacy. Most definitions focus on the content and processes of major science disciplines, ignoring social factors and citizens’ needs. The authors developed a definition of scientific literacy for the California 4-H Program from the citizen’s perspective, concentrating on real-world science-related situations. The definition includes four anchor points: science content; scientific reasoning skills
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The third season of the national PBS series, SciGirls, is the first national children’s television series and website designed to engage and educate millions of children about citizen science. In each half-hour episode, a female mentor guides a group of ethnically diverse middle school girls as they learn about citizen science protocols and collect and share data for an established citizen science project. In addition to the videos, the SciGirls website presents
Research on mathematical reasoning and learning has long been a central part of the classroom and formal education literature (e.g., National Research Council, 2001, 2005). However, much less attention has been paid to how children and adults engage with and learn about math outside of school, including everyday settings and designed informal learning environments, such as interactive math exhibits in science centers. With the growing recognition of the importance of informal STEM education (National Research Council, 2009, 2015), researchers, educators, and policymakers are paying more
Making, tinkering, and other informal design and engineering experiences offer rich opportunities to engage
children and adults in mathematics and build mathematical skills, knowledge, and interests. But how can educators
successfully integrate mathematics into these experiences? One approach to answering this question is to better understand how children and adults engage with and think about mathematics outside of school, in every day and informal learning environments. As part of the NSF-funded Math in
the Making project, Pattison, Rubin, and Wright (2016) synthesized the research on
Although there is a growing body of research on mathematics in informal learning environments (Pattison, Rubin, & Wright, 2016; Rubin, Garibay, & Pattison, 2016), less has been done to understand how math can be integrated into other informal STEM education settings or topics, and how this integration might engage those who do not already have positive attitudes about math. Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities (Bevan, Gutwill, Petrich, & Wilkinson, 2015; Vossoughi, Escudé, Kong, & Hooper
As part of a focus group exploratory study into the feasibility of presenting to the public an on-going review of new findings or issues in major fields of science research, 128 adult participants noted which two of ten contemporary science research areas they were most interested in. Of note is the fact that all classification variables (except gender) were unrelated to topic appeal. Interest in each research topic was not influenced by age; educational level; minority/majority grouping; total household income; occupational status; and perceived need for science knowledge in one's employment
The fact that inquiry-based science teaching has been defined in various ways makes claims about its effectiveness with students difficult to synthesize. In this meta-analysis, the authors generate a two-dimensional framework to analyze studies of the effectiveness of inquiry-based science instruction in improving student learning outcomes.
Lobato, Rhodehamel, and Hohensee investigated how learners “transferred” knowledge from one situation to another. They found that both individual cognition and the social organization of the class drove the learners’ process of selecting, interpreting, and working with particular features of mathematical information. They also found the social arrangements of the class influenced what pieces of information students noticed and focused on.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project will provide much needed empirical results on how to promote children’s STEM engagement and learning in informal science education settings. The project will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy.