This year we are pleased to be publishing the second volume of the annual proceedings for the Games+Learning+Society (GLS) Conference. For eight years now, GLS has been a valued event for individuals working in academia, industry, and as practitioners in schools to come together around their shared interest and passion for videogames and learning. This conference is one of the few destinations where the people who create high-quality digital learning media can gather to discuss and shape what is happening in the field and how the field can serve the public interest. GLS offers an opportunity
DATE:
TEAM MEMBERS:
Crystle MartinAmanda OchsnerKurt Squire
This is the first volume of the annual proceedings for the Games+Learning+Society (GLS). The GLS conference is a premier event for those from both academia and industry interested in videogames and learning. The GLS conference is one of the few destinations where the people who create high-quality digital learning media can gather for a serious think about what is happening in the field and how the field can serve the public interest. The conference offers an opportunity for in-depth conversation and social networking across diverse disciplines including game studies, education research
DATE:
TEAM MEMBERS:
Constance SteinkuehlerCrystle MartinAmanda Ochsner
resourceprojectProfessional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE) is a National Science Foundation (NSF) funded resource center, working in cooperation with the NSF Advancing Informal STEM Learning (AISL) program to build and advance the informal STEM education field. CAISE continues the work it began in 2007--serving professional audiences in informal STEM learning, which includes those working in science centers and museums, zoos and aquariums, parks, botanical gardens and nature centers, events and festivals, libraries, making and tinkering spaces, media (TV, radio, film, social), cyberlearning and gaming, and youth, community, and out-of-school time programs.
What We Do:
CAISE seeks to characterize, highlight, and connect quality, evidence-based informal STEM learning work supported by a diversity of federal, local, and private funders by providing access to over 8,000 (and growing) resources that include project descriptions, research literature, evaluation reports and other documentation on the InformalScience.org website. In addition, CAISE convenes inquiry groups, workshops and principal investigator meetings designed to facilitate discussion and identify the needs and opportunities for informal STEM learning.
In this award, CAISE is also tasked with advancing and better integrating the professional fields of informal STEM learning and science communication by (1) broadening participation in these fields, (2) deepening links between research and practice, and (3) building capacity in evaluation and measurement. These activities are being undertaken by cross-sector task forces of established and emerging who will be responsible for conducting field-level analyses, engaging stakeholders, and creating roadmaps for future efforts. CAISE is also building on existing communication channels for dissemination to the larger field, and through the InformalScience.org website. An External Review Board and Inverness Research are providing oversight of CAISE's program activities and evaluation of the center.
Who We Are:
CAISE operates as a network of core staff housed at the Association of Science-Technology Centers (ASTC) in Washington, D.C. and co-principal investigators and other collaborators at academic institutions and informal STEM education (ISE) organizations across the U.S. Other key collaborators are the American Association for the Advancement of Science's Center for Public Engagement with Science, the National Informal STEM Education Network, and Arizona State University.
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
Through a comparative case study, Sheridan and colleagues explore how makerspaces may function as learning environments. Drawing on field observations, interviews, and analysis of artifacts, videos, and other documents, the authors describe features of three makerspaces and how participants learn and develop through complex design and making practices. They describe how the makerspaces help individuals identify problems, build models, learn and apply skills, revise ideas, and share new knowledge with others. The authors conclude with a discussion of the implications of their findings for this
What can a visually impaired student achieve in art education? Can visually impaired students teach sighted students about elements of perception that sighted students would not normally consider? Are the legal moves towards rights to equal access for visually impaired people useful in asserting that visually impaired students can gain as much from gallery exhibits as sighted students can? In this article, these questions are studied in a practice report of a course involving visually impaired and sighted students working in groups, studying in a museum and creating art work at schools for the
The science education community is buzzing about STEM learning ecosystems, ecologies of learning, and ecological perspectives on learning. You may not know it, but if your teaching involves building on young people’s prior knowledge or making connections between the science curriculum and science in the broader world, your work may already reflect aspects of ecological learning theories. At the heart of an ecological perspective on learning is the need to make connections across formal, informal, and everyday learning. So, what are STEM learning ecologies all about, and how can science
Connected Science Learning is a journal around which all science, technology, engineering, and math (STEM) educators can gather. The National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC) have partnered on this National Science Foundation (NSF)–funded project to leverage our extensive combined reach across the formal and informal STEM educator communities. NSTA represents about 50,000 K–12 science educators, while ASTC member science centers and museums are in communities across the globe, reaching 100 million visitors per year, many of whom are
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?
The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.
The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
“The activity where we collected organisms was a good influence ’cause I could see myself as a scientist. I got to do the actual thing.” These words from Celeste, a girl who participated in the Coastal Ecology program at the Chincoteague Bay Field Station on the Eastern Shore of Virginia, are not unique. Other girls who participated in the program offered similar input, suggesting that engaging in science in this out-of-school time (OST) setting enhanced their identity and sense of self as learners of science. OST programs like the Coastal Ecology science camp can positively influence science
The U.S. government’s Physical Activity Guidelines for Americans suggest that children should engage in moderate to vigorous physical activity for 60 minutes per day (U.S. Department of Health and Human Services [U.S. DHHS], 2008). However, recent data indicate that children in the U.S. are not accumulating enough physical activity (Centers for Disease Control and Prevention, 2014). The concern is deepest for youth of lower socioeconomic status and youth of color (Moore, Davis, Baxter, Lewis, & Yin, 2008; Singh, Kogan, Siahpush, & van Dyck, 2008). As a result, professionals in a variety of
DATE:
TEAM MEMBERS:
Heather ErwinStephanie RoseSarah SmallJay Perman
This document contains the appendices and literature review from the report "Art+Science: Broadening Youth Participation in STEM Learning." It includes assessment tools used during the project.