Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California. Project partners include the Rueben H. Fleet Science Center and the University of California, San Diego (UCSD). The project's goals are to support teachers in the development of informal science education opportunities for English learners, partner with students in grades 7-12 to create activities and exhibits, deliver student-produced products to community members, and sustain and disseminate the activities through the development of web-based teacher tools. The teachers will work with informal science education experts, STEM professionals, and undergraduate students to develop and implement the program lessons with their 7-12 grade students. The activities and exhibits designed for community audiences will be used in the Imperial Valley Discovery Zone, slated for completion in fall 2013. Special emphasis will be placed on understanding English scientific word frames and science content specific vocabulary to help ELL students express complex scientific concepts in English. The project deliverables in this pilot project include a comprehensive teacher professional development strategy, student-developed informal science activities and exhibits, a project website, and multiple teacher resources (lesson plans, how-to guides, training materials, and social networking tools). Teachers will receive 45 hours of professional development during the summer with an additional 20 hours of support provided during the school year. UCSD's Jacob's School of Engineering will provide training on solar energy micro-grids using a micro-grid observatory to be located in Imperial Valley. English language development training will be provided by the University of California's Professional Development Institute (UCPDI) and address the role of language objectives in scientific conceptual knowledge and language development; using science and language to improve classroom questioning/discussion; and teaching academic language to English learners. The informal science education component of the training provided by the Fleet Science Center will address topics such as questioning strategies, scientific reasoning frameworks, communicating science to public audiences, and learning "high level" science content using hands-on approaches. The project design builds on research which supports an active learning approach that mirrors scientific practice and is one of the strengths of informal science learning environments. The question to be addressed by the USA Project is: "Can informal STEM activities with embedded English Language development strategies assist English learner students to increase their English language competency and their interest in STEM subjects?" The PI seeks to identify the impact that teachers have on guiding students in inquiry-based informal STEM education, evaluate the academic outcomes for students, and measure changes in community interest, understanding, and attitudes towards STEM and STEM occupations. The USA Project is designed to reach approximately 200 underserved students and will promote the participation of at least 400 additional students, parents, and other rural community members. It is anticipated that this project will result in the development of a model for teacher-led informal STEM education, increased STEM learning opportunities for the community, and the development of a network of educational institutions that helps to bridge formal and informal STEM learning and learning environments.
This CAREER proposal focuses on the development of teachers' identities, which are operationalized as beliefs and practices, behaviors, and pedagogical knowledge. The PI uses a qualitative approach, occurring over two phases, to investigate the impact of formal-informal collaborations on identity development over time. The study is grounded in an ecological theoretical approach that incorporates a view of informal learning settings as learner-driven and unique in providing opportunities for interaction with objects during meaning-making experiences among groups of learners. The longitudinal research design includes collection of an array of data, including observations of teaching and learning activities, interviews, survey responses, and archival documents such as student work and videos of classroom experiences. The PI uses a narrative analysis and a grounded theoretical approach to generate themes about beliefs and practices around behaviors and pedagogical knowledge informed by informal science education experiences. Research findings and related educational activities inform the field's understanding of best practices of integrating informal science activities into science teacher education, including determining appropriate kinds of support for STEM teachers who learn to teach in informal learning environments (ILE). The PI is integrating research findings in the revision of existing courses and the development of new courses and experiences for both new and experienced teachers. The project addresses the need for empirical evidence of impacts of ILE experiences on professional development, and will build capacity of informal science institution and university professionals to provide effective teacher education experiences and new teacher support.
This technical report summarizes the statistical analyses used to determine how well the Measuring Activation (MA) instrument developed through the Science Learning Activation Lab project gathers appropriate information about the five dimensions of activation. The MA instrument was designed to evaluate the impact of science-learning programs and experiences on activation, and contains a series of survey items organized around five identified dimensions of activation. The five dimensions of activation are: fascination, values, perceived autonomy, competency beliefs, and scientific sensemaking.
In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. This book explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making
DATE:
TEAM MEMBERS:
National Research CouncilCommittee on Underrepresented Groups and the Expansion of the Science and Engineering Workforce PipelineCommittee on Science, Engineering, and Public Policy (COSEPUP)Policy and Global Affairs (PGA)National Academy of SciencesNational Academy of EngineeringInstitute of Medicine (IOM)
resourceresearchProfessional Development, Conferences, and Networks
This book describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each field including education research develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.
DATE:
TEAM MEMBERS:
National Research CouncilRich ShavelsonLisa Towne
This report combines the views of education researchers, technology developers, educators, and researchers in emerging fields such as educational data mining and technology-supported evidence-centered design to present an expanded view of approaches to evidence. It presents the case for why the transition to digital learning warrants a re-examination of how we think about educational evidence. The report describes approaches to evidence-gathering that capitalize on digital learning data and draws implications for policy, education practice, and R&D funding.
DATE:
TEAM MEMBERS:
U.S. Department of EducationOffice of Educational Technology
This report is the National Education Technology Plan (NETP) submitted by the U.S. Department of Education (ED) to Congress. It presents five goals with recommendations for states, districts, the federal government, and other stakeholders. Each goal addresses one of the five essential components of learning powered by technology: Learning, Assessment, Teaching, Infrastructure, and Productivity. The plan also calls for "grand challenge" research and development initiatives to solve crucial long-term problems that the ED believes should be funded and coordinated at a national level.
DATE:
TEAM MEMBERS:
U.S. Department of EducationDaniel AtkinsJohn BennettJohn Seely BrownAneesh ChopraChris DedeBarry FishmanLouis GomezMargaret HoneyYasmin KafaiMaribeth LuftglassRoy PeaJim PellegrinoDavid RoseCandace ThilleBrenda Williams
This article discusses the keys to successful field trips. The authors outline findings from eight years of studying self-guided school groups at the Monterey Bay Aquarium, including what they've learned about these groups and their plans for enhancing field trip experiences.
This article discusses the methodology, key findings, and implications of a 1998-1999 evaluation conducted by the US Holocaust Memorial Museum of its educational programming for school groups. The evaluation examined the impact of the school programs as well as guided future programming decisions.
This article discusses "The Big History Lesson," an educational program at the Michigan Historical Museum in which teachers and students use the museum as their classroom for a week for a lively, in-depth study of Michigan history. This project is a model of teaching and learning that makes a real world, hands-on, personal history connection for students.
This article discusses museum field trips and a study that investigated teacher approaches to visiting out-of-school learning environments for science education. This article describes teachers' and (adolescent) students' differing experiences of field trips, and discusses the need for 'museums' to communicate more effectively with teachers and students prior to school field trips.