The new standards posit that “scientific argumentation,” in which students use data to argue from evidence, is a key practice for student science learning. However, a mismatch in expectations about the purpose of classroom discussions can inhibit productive forms of argumentation. Berland and Hammer compare forms of class discussions to identify how best to support students’ engagement in argumentation.
The authors of this study investigated the educational potential of a digital math game called Zombie Division in an elementary classroom. Habgood & Ainsworth were interested in the effect of what they called “intrinsic integration” –linking the video game’s core mechanics of play to the educational content. The idea is linked to the field of research called intrinsic motivation, in which the only reward is pleasure in the activity itself. The researchers argue that, while a game like MathBlaster is fun, it does not embody the mathematics lesson as an intrinsic part of game play.
Dancu, Gutwill, and Hido describe a process for designing science museum exhibits to create playful learning experiences. They outline five characteristics of play: It is structured by constraints, active without being stressful, focused on process not outcome, self-directed, and imaginative. For each characteristic, they offer an example of iterative design using formative evaluation.
For over a decade, science educators have lamented the ways in which testing in reading and mathematics has reduced time for science instruction. Blank used 20 years of national teacher and student data to understand how time allocated to science instruction combines with student demographics to shape test scores. The study found a small but significant positive relationship between time on science instruction and performance.
Although computer science drives innovations that directly affect our everyday lives, few K–12 students have access to engaging and rigorous computer science learning. This article describes an effort to democratize access to computer science education through a program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy.
What do images communicate about humans’ place in nature? Medin and Bang posit that the artifacts used to communicate science—including words, photographs, and illustrations—commonly reflect the cultural orientations of their creators. The authors argue that Native Americans traditionally see themselves as part of nature and focus on ecological relationships, while European Americans perceive themselves as outside of nature and think in terms of taxonomic relationships.
Bathgate, Schunn, and Correnti investigate students’ motivation toward science across three dimensions: the context or setting, the way in which students interact with science materials or ideas, and the activity topic. Findings point to the importance of understanding children’s perceptions of specific science topics, not just science in general.
In order to reframe how learning is organized in traditionally male-dominated areas of STEM education, the authors show how collaborative girl-boy pairs engaged with an “e-textiles” making activity. E-textiles are circuit activities combining needles, fabric, and conductive thread, challenging traditional gender practices related to both sewing and electronics.
This paper investigates how intentionally designed features of an out-of-school time program, Studio STEM, influenced middle school youths’ engagement in their learning. The authors took a connected learning approach, using new media to support peer interaction and engagement with an engineering design challenge in an open and flexible learning environment.
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:
1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.
2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.
3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
DATE:
-
TEAM MEMBERS:
Julia Kennard
resourceprojectProfessional Development, Conferences, and Networks
Understanding the Sun Through NASA Missions. The Maryland Science Center (MSC) initiative is targeted to rural educators and library patrons in Maryland, Virginia and West Virginia. The Maryland Science Center is lead partner collaborating with Prince George’s County, Maryland Public Schools and its Howard B. Owens Science Center, and with NASA Goddard Space Flight Center to develop Educator Workshops and library exhibits for the Maryland counties of Cecil, Kent and Washington and NASA Wallops Visitor Center (Virginia) and NASA’s Independent Verification and Validation (IV&V) Center (West Virginia). The project will make participants aware and better informed of NASA Heliophysics science and NASA missions studying the Sun. Participants in the programs will come to a better understanding of the Sun, space weather, and the Sun’s far-reaching influence on our planet and the rest of the Solar System. Educators will be better prepared to teach students using NASA-developed hands-on materials demonstrated and provided in the workshops, as well as Sun Spotters and Solar Scopes to examine solar surface features, helping to engage them and their students in better understanding our closest star. Rural libraries patrons will encounter NASA mission science, and MSC visitors will acquire better comprehension of the Sun. All participants will come away with a renewed appreciation of our Sun and how it works, its variability, its ongoing effects on our planet, the nature of the scientific study of the Sun, and how and why NASA is exploring the Sun with its current missions.
WCS launched its electronic field trip program, Distance Learning Expeditions, in 2001 when there
was tremendous interest in the educational community in the potential of videoconferencing
technology for program delivery, as well as money available for the purchase of related broadcast
equipment. The program grew rapidly and was successful through 2009 -- serving 9,600 students
in 2006-07, its largest year. From 2010 to 2014, with school budget cuts, high equipment
maintenance costs, and shifts in staffing, participation in the program declined. In 2010, WCS
secured a grant from IMLS for