Libraries serve vital roles in communities not only for access to print media but also family programming and access to the internet. Because of their widespread local presence in communities and the diverse communities served, libraries are well-positioned to address inequalities in access to technology, family programming, and spaces for collaboration. Science centers, universities, and community centers represent resources that can partner with libraries to create science and technology-related content for delivery to diverse communities. Research has firmly established the link between parent engagement and a broad range of student academic outcomes, including higher student attendance, achievement and graduation rates. A growing body of research in out-of-school science learning is focusing on the rich and varied ways in which families learn science outside of school, including habits of mind, motivation, and identities as scientists. Pilot work showed that backpacks have the potential for youth and parents to take on new roles relative to STEM work, with parents or older siblings taking on roles of lab partners, translators, and even teachers. The Robotics and E-Textiles project will support increased capacity within libraries and community centers to hold robotics workshops for families in their own communities. Libraries and community centers will serve as vehicles through which families engage with robotics and e-textiles, resulting in wider access to Next Generation Science Standards' engineering practices to more people. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Librarians and community engagement leaders will participate in professional experiences to develop science and technology content and facilitation skills. University researchers in collaboration with project partners will use a design-based research methodology to iteratively design the professional development and backpack programs and to investigate learning processes and outcomes. The Cultural Learning Pathways theoretical model will guide the study of how engagement with robotics/e-textiles experiences can lead to changes in practice, identity, and deeper participation in communities of practice on the part of librarians, youth, and families. Although collaborations between public libraries and informal science providers are becoming increasingly common, this project will document the process of developing such collaborations and draw insights that may be applied to other contexts. By bringing together traditional and non-traditional community organizations to develop and facilitate STEM learning experiences, this project has the potential for resulting in a new model for a decentralized system of informal STEM education and broadening participation in STEM. Over the life of the project, the number of partner libraries will expand from one to four, and it is anticipated to reach more than 550 families. It is being conducted through a partnership between the University of Washington, the Pacific Science Center, the Seattle Public Libraries, and Red Eagle Soaring, a Native American community youth program.
Proposals to the AISL program are due November 4, 2015. Available below is a narrated powerpoint presentation that addresses a number of elements of the solicitation to help prospective submitters prepare proposals.
Ocean science is important for the public to understand as the impact of water as a resource has become more significant in recent years. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings including rural communities. This project's goals are to educate rural communities and youth about ocean science via setting up exhibits in unique venues such as parks, parking lots and at community gatherings as well as in local libraries. Local library staff and Girl Scouts will assist the investigators in operationalizing the community activities. The project is a collaboration between the Consortium for Leadership, Inc., Rutgers University, the University of Hawaii, Ashland University, the College of Exploration, the Girl Scout organization and some of its affiliates, the Rural Library Education Network, local museums, and the Texas State Aquarium. This project will experiment with a new style of presentation called "Pop up" which brings in exhibits that are rapidly and easily set up in unconventional venues such as parks to get the communities' attention. From among the visitors attending the "Pop up" sessions, the organizers will invite those who have shown interest to attend deeper discussions of ocean science at the local library. This deeper discussion, referred to as "Drill down", will involve scientists commenting from a research ship on their research activities. Cores from the ocean floor will be used to educate attendees about the history of the planet. Locations of the project venues will include rural communities that have a high population of underserved citizens. Research questions to be investigated are: 1. Do the "Pop up" and "Drill down" exercises create an effective and sustainable model for STEM (science, technology, engineering, and mathematics) learning? 2. How does the "Pop up/Drill down" methodology meet the needs of partner informal science education institutions such as the libraries and Girl Scouts in fulfilling their own missions? 3. What is the impact of these sessions on increasing awareness and knowledge of ocean and earth science, technology, and the work of scientists/engineers?
DATE:
-
TEAM MEMBERS:
Sharon CooperKevin JohnsonCarrie FerraroKaterina Petronotis
This is the solicitation for proposals to the NSF Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments for public and professional audiences; provide multiple pathways for broadening access to and engagement in STEM learning experiences; advance innovative research on and assessment of STEM learning in informal environments; and develop understandings of deeper learning by participants.
Crowdsourcing and citizen science help federal agencies to innovate, collaborate and discover. In this toolkit, you will learn how to design and maintain projects. You can also read through case studies and access additional resources related to communities that practice crowdsourcing and citizen science. The Citizen Science and Crowdsourcing Toolkit was released by the White House Office of Science and Technology Policy (OSTP) and the Federal Community of Practice for Crowdsourcing and Citizen Science (CCS).
This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of engaging children ages 8 to 13 in the wonders of science and the application of scientific principles through the transmedia SCIENTASTIC! project. The study will also demonstrate that the television series will help students answer questions and solve problems for themselves and their community. The American public supports the advancement of scientific knowledge and our investment in scientific research leads the world. However, Americans are falling behind in educating the next generation of scientists. Late elementary school is an ideal time to capture students' attention and engage them in STEM activities. Using rigorous evaluation techniques we will show that SCIENTASTIC! encourages hands-on learning by exploration, questioning and thinking. The innovative television program and integrated companion resources provide scientific role models and demonstrate the scientific process in an entertaining way. The associated web site, Apps, Web 2.0 repository and teaching aids allow students, teachers, and parents to further explore concepts introduced in the show. Preliminary analysis reveals that the SCIENTASTIC! target audience liked the show, would watch the show and learned from the show. Further analysis will demonstrate that the transmedia approach increases viewer interest and learning. The broader impact/commercial potential of this project will play a transformative role in encouraging students to take STEM courses in college, pursue scientific careers, and become a scientifically informed electorate. By developing the story beyond the story, transmedia SCIENTASTIC! has strong commercial value. Dissemination through public television allows for a potential audience of 250 million people. Commercial and noncommercial sponsorships will be sold with associated on-air credits. Additional direct funding will be sought from industries with interests in promoting science and health literacy. A commercial version of the program will be offered to cable networks on a licensing basis, with DVDs, Apps and study guides sold to schools, homeschoolers, and parents. With a broad and commercially viable dissemination, SCIENTASTIC! will show children the joys of science by demonstrating and engaging in hands-on, team- based learning in real-world contexts. This process will improve student retention and will show that SCIENTASTIC! introduces new ways to learn. The SCIENTASTIC! project will evaluate teaching techniques information that will be shared with policy-makers, educational institutions, and teachers to improve education nationwide. By spreading successful methods for engaging children in math and science, SCIENTASTIC! shoiuld have significant societal benefit creating a generation of scientifically educated decision-makers.
Planet Earth Television (PET) created Scientistic!, a television series that focuses on a young girl's scientific investigations of the world around her. The pilot episode, Sticks and Stones, explored bones and how they heal. A website and iPad app were also developed to supplement the program. REA evaluated the impact of the television program, website, and app on youth's knowledge about and interest in science and specific topics related to bone health and healing. REA recruited youth (grades 1-7) to participate either at home with their families or in a classroom with their teachers. REA
Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States and many other countries, particularly in ecology, the environmental sciences, and related fields of inquiry. The goal of this report is to help government agencies and
Nationally, there is tremendous interest in enhancing participation in science, technology, engineering, and mathematics (STEM). Providing rich opportunities for engagement in science and engineering practices may be key to developing a much larger cadre of young people who grow up interested in and pursue future STEM education and career options. One particularly powerful way to engage children in such exploration and playful experimentation may be through learning experiences that call for tinkering with real objects and tools to make and remake things. Tinkering is an important target for research and educational practice for at least two reasons: (1) tinkering experiences are frequently social, involving children interacting with educators and family members who can support STEM-relevant tinkering in various ways and (2) tinkering is more open-ended than many other kinds of building experiences (e.g., puzzles, making a model airplane), because it is the participants' own unique questions and objectives that guide the activity. Thus, tinkering provides a highly accessible point of entry into early STEM learning for children and families who do not all share the same backgrounds, circumstances, interests, and expertise. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The project will take place in the Tinkering Lab exhibit at Chicago Children's Museum. The research will investigate how reflective interactions between parents and children (ages 6-8) during tinkering activities ultimately impact child engagement in STEM. Design-based research (DBR) is well-suited to the iterative and contextually-rich process of tinkering. Using a DBR approach, researchers and museum facilitators will be trained to prompt variations of simple reflection strategies at different time points between family members as a way to strengthen children's engagement with, and memory of these shared tinkering events. Through progressive refinement, each cycle of testing will lead to new hypotheses that can be tested in the subsequent round of observations. The operationalization of study constructs and their measurement will come organically from families' activities in the Tinkering Lab and will be developed in consultation with members of the advisory board. Data collection strategies will include observation and interviews; a series of coding schemes will be used to make sense of the data. The research will result in theoretical and practical understanding of ways to enhance STEM engagement and learning by young children and their families through tinkering. A diverse group of at least 350 children and their families will be involved. The project will provide much needed empirical results on how to promote STEM engagement and learning in informal science education settings. It will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children. This research is being conducted through a partnership between researchers at Loyola University of Chicago and Northwestern University and museum staff and educators at the Chicago Children's Museum.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and research an integrated children's media and early childhood educator professional development strategy to prepare preschoolers with social-emotional skills that provide a foundation for later math learning success. The social-emotional skills include persistence, risk-taking, regulating anxieties, and collaborating to solve problems. Media components include Peg+Cat television episodes, videos, games and apps distributed through PBS broadcast and online. The integrated professional development model is designed to impact these educators' understanding of math and develop their skills for fostering in children a positive math mindset. Additional resources include a new Peg+Cat summer day camp at the Carnegie Science Center in Pittsburgh. The project partners include a media company, The Fred Rogers Company; researchers at the University of Pittsburgh and St. Vincent College; and the evaluator, Rockman et al. This project is unique in its focus on integrating social-emotional skills with early math learning and educator skill development. It will fill an important niche in the research literature and has the potential to impact media practice which is undergoing significant change as new digital tools and technologies become available for learning. Both standardized and researcher-developed measures will be used to assess learning outcomes, including early childhood educators' attitudes and quality of instruction, as well as children's interest and engagement in math. The research design includes iterative data collection to inform the development and refinement of the professional learning for teachers. The mixed methods approach will include classroom observations, interviews and focus groups with educators, and parent questionnaires. Key questions include: does exposure to Peg+Cat positively relate to children's use of social-emotional skills during math learning activities? Does educators' exposure to the professional development training improve their attitudes and abilities to infuse math instruction with social-emotional skills? Does having an educator who received Peg+Cat training impact children's engagement and interest in math?
Approximately 8.4 million children in the United States participate annually in out-of-school time (OST) programs with a science component. These programs have been shown to have a wide range of impacts on scientific literacy, school achievement, and career interest. Because such programs take place outside of home and school, they offer participants learning flexibility and a sense of agency that otherwise do not exist in traditional science learning contexts. However, current research on OST is largely limited to evaluation-level data that has not been synthesized, making it difficult to draw definite conclusions. As seen in other fields, a larger evidence base is needed for the OST field to grow or else non-evidence-based policies will be imposed upon the field by outside forces. The project team will conduct an experimental, longitudinal research project to address these issues. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The study uses a sophisticated design with a wide variety of measures to follow three cohorts of adolescent youth (~200) over a 4-year period to address the primary research question: How does participation of adolescent youth from traditionally underrepresented groups in a well-established, out-of-school time science program affect their career choices and attitudes towards science as they mature into early adulthood? While each measure is rooted in established literature and methodology, putting it all together using a comprehensive, complementary approach has not yet been done in the OST field. The research studies will be looking at a number of variables in order to measure program impact including: demographic and experiential background of program participants, STEM attitudes, career interest/choices, scientific engagement, and participation. Data will be collected via survey, observation, interviews, and document review. The program practitioners will contribute diary and field note data to the study. This project will provide STEM education practitioners with the evidence-based information they need to develop better programs for underrepresented minority (URM) youth so program and policy decisions are not made in a vacuum. Operationally, findings will have an impact on OST and URM science education researchers by generating new research methodology and techniques. Tactically, it will benefit greater URM communities by investigating how OST programs can support science learning and scientific interest among their adolescent youth. Strategically, the study impacts the nation by providing evidence about the validity of OST programs as a critical partner to address the issue of URM involvement in the STEM workforce. Also, the corpus of raw data will be made public, providing a large and varied data set for others to explore. This research is being conducted by the Museum of Science and Industry, Chicago, and the Curry School of Education at the University of Virginia.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project is a time sensitive educational response to the 7.8 magnitude earthquake that struck Nepal on April 25, 2015 and was followed by major aftershocks. This project builds on the intense worldwide interest in that disaster by developing and distributing media resources for the public and educators explaining the scientific research into tectonic and fluvial processes of this highly vulnerable region encompassing the Himalayas of Nepal, the Ganges-Brahmaputra River Delta of Bangladesh and India, and the mountains of northeastern India. Project deliverables include PBS NewsHour broadcasts and online stories, short videos for classroom use, 3D/2D videos for public screenings in museums, Earth Magazine blogs and articles, and DVDs. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in earth sciences research to increase knowledge of the conditions and processes that periodically cause earthquakes, landslides, and flooding. This education project leverages those investments and the public interest in the recent Nepal earthquake with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and in other vulnerable regions.