Does the public trust science? Scientists? Scientific organizations? What roles do trust and the lack of trust play in public debates about how science can be used to address such societal concerns as childhood vaccination, cancer screening, and a warming planet? What could happen if social trust in science or scientists faded? These types of questions led the Roundtable on Public Interfaces of the Life Sciences of the National Academies of Sciences, Engineering, and Medicine to convene a 2-day workshop on May 5-6, 2015 on public trust in science. This report explores empirical evidence on
DATE:
TEAM MEMBERS:
Helaine ResnickKeegan SawyerNancy Huddleston
This project's interdisciplinary team will carry out research and training that will identify ways for professionals in science, technology, engineering, and mathematics (STEM) to engage with public audiences that currently lack the community connections, resources, time, or know-how to gain access to science education and to scientists. The project will create real and on-line materials for scientists to convey the excitement, content, and relevance of their own research to public groups whose values, professions, or aesthetic and cultural backgrounds are connected to that research topic. The project will also foster ways for scientists to understand that members of the public can provide valuable input to science. Research and evaluation on the development of this innovative public engagement model "the STEM Ambassador Program (STEMAP)" will be conducted to provide insights into the effectiveness and extensibility of the STEMAP model. This approach integrates three existing elements of science engagement that have previously not been linked: design thinking, informal science education communication skills from museum work, and connecting scientists' research with the existing values of particular community groups. Robust evaluation will enhance effectiveness of in-person and online trainings; research will provide understanding of how different science learning models can be integrated and enhanced for public audiences and for scientists. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Science and society need innovative and transformative ways to interact synergistically. Given the deep knowledge and contagious passion for their research, STEM professionals can bring unique assets to directly engage public audiences, especially important the traditionally underserved public groups. Members of the public in turn have the potential to provide novel ideas, data, and insights to support researchers. The project's exploratory research will help understand how STEM professionals can broaden participation by themselves engaging unengaged publics with the excitement of science and science knowledge in ways that are congruent with academic rewards. The project team will integrate three existing NSF-funded models: a) Research Ambassador Program, b) Portal to the Public, and c) Design Thinking. A cadre of faculty and graduate students will be trained in "STEM Ambassadors" workshops, in which social scientists and community group representatives will help STEM Ambassadors identify public groups with interests that connect to the scientist's research. Engagement events will occur in community venues, e.g., churches, factories, and day care centers, etc. Case studies and evaluation instruments answer research questions about: the role of empathy in the formation and change of identity; relationships between public audiences, mode of engagement, and identity shifts; and motivational drivers for STEM Ambassadors and public audiences. The intellectual merit is the training and evaluating of 50 STEM Ambassadors (via 100 outreach events involving approximately 5000 individuals from community groups); strategies that encourage STEM professionals to engage with underrepresented publics; and insights on how to integrate multiple education models. STEMAP will disseminate its findings and new resources through the STEMAP website. In addition, the dissemination efforts will be extended through: collaboration with the NSF-funded PoPNet Expansion Project and the Centers for Science and Mathematics Education (CSMEs); presentations at national science professional organizations, such as the AAAS, as well as through the CAISE Wiki and the National Alliance for Broader Impacts (NABI). STEMAP will create a process for other NSF PIs to generate, evaluate, and articulate their research and its applications to public groups that lie far outside academia.
Arizona State University will develop new features for its SciStarter website that will expand participation in citizen science and provide rich data for researching the nature of and impacts of citizen science participation. SciStarter is a popular online citizen science hotspot featuring more than 850 searchable citizen science projects, added by researchers and project owners, and serving over 35,000 citizen scientists. The project will develop new features to add to the current website that will enable participants to explore hundreds of citizen science projects and select projects of most interest to them, track their participation, and connect to people and projects they are interested in. The expanded website will also provide rich data that will help citizen science projects evaluate their programs and that will rich data for researchers to investigate the nature of citizen science participation. The website will be widely accessible to the public through partnerships with Discover Magazine, the Citizen Science Association, and other partners. The SciStarter website will develop additional features to expand citizen science participation and to research the nature and impacts of participation. The expanded features will include: (1) an integrated registration for participants to more easily engage in one or multiple citizen science projects, across platforms; (2) GIS implementation for project owners to define the geographic boundaries of projects so participants can find them more easily; and (3) an online, personal dashboard for participants to track their projects, participation, and contributions to science, share and save data, record interests in projects, create profiles, and find people and projects of interest to them. These new features will create opportunities for future research concerning: (1) understanding how citizen scientists use the site and how it responds to their needs and interests, and (2) understanding why, how, and with what impacts citizen scientists participate in research. The project will support the overall strategy of the Advancing Informal STEM Learning Program to enhance learning in informal environments through the funding of innovative resources through a variety of settings. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This media and research project will inform adult audiences about the discoveries of NSF funded Social, Behavioral, and Economic (SBE) scientists that are dramatically re-shaping fields as diverse as economics, marketing, medicine and government. Four primetime PBS specials hosted by science reporter, Miles O'Brien, will be produced featuring leading SBE scientists and vetted for inclusion by a panel of expert advisors including Baruch Fischhoff of Carnegie Mellon and Robert Kurzban of the University of Pennsylvania. A key innovation in the project is a participatory research strategy that will enable the public to take part directly in scientific behavioral research and discover what their participation has revealed about their own lives. Built around YouTube features, Facebook, and online games it will build on the public's interest in learning about themselves and others via social media supported by scientific research. The project collaborators include the media company, Oregon Public Broadcasting, and researchers at Carnegie Mellon, University of Pennsylvania, Yale University, and Chapman University. This project is unique in its strategy for combining broadcast television programs focusing on Social, Behavioral, and Economics research with a participatory research component that engages audiences in scientific studies that are personally relevant. It will fill an important niche in the informal learning research literature and has the potential to impact media practice that continues to evolve incorporating new online social media tools. RMC will conduct formative evaluation to help inform the project deliverables, a summative evaluation of the project, and an experimental research study in Year 3 of the project. The research study is based on the hypothesis that those participants assigned to watch the entire television series and engage in all participatory research activities will experience the greatest gains in STEM interest and engagement as compared to those who only have limited exposure. Research participants will be randomly assigned to the control group (no services) or one of the three treatment conditions: view TV only; engage in participatory website only; or both. Pre-tests and posttests and statistical tools will be used to compare changes. Sub-studies will examine dosage levels and effectiveness in engaging those who have not previously been interested in STEM.
The Seeing Scientifically project will research a new way of supporting museum visitor experiences so they can have authentic scientific observation of live microscopic specimens. By adapting existing computational imaging techniques from current biological research, the project aims to encourage and support visitors in observing scientifically, that is, in asking productive questions, interpreting image-rich information, and making inferences from visual evidence that increasingly characterizes current biological research. The scaffolding (e.g., visual cues or information supporting learning) will consist of a system of virtual guides and prompts that are responsive to what visitors see. The scaffolding prompts will be overlaid on a real time, high-density image of a live sample that the visitor is investigating with a research grade microscope. Project research will contribute early knowledge on ways to scaffold informal learners in the practice of authentic scientific observation with the complex, dynamic visual evidence that scientists themselves see using the equipment and techniques they use. Project research and resources will be widely disseminated to learning science researchers, informal science practitioners, and other interested audiences through publications, conference presentations and sharing of resources via the NSF-supported informalscience.org website and other relevant websites. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will prototype an innovative microscope exhibit that scaffolds visitors in scientific observation of live specimens and their biological processes. The overarching hypothesis is that scientific observation of real-time visual phenomena can deeply engage learners with the content, tools and practices of modern science, which increasingly rely on image-based data. Through three rounds of iterative prototype development and evaluation, the project will generate early findings for the following related questions: (1) what are promising ways of scaffolding observation of live specimens at an unmediated exhibit; (2) How can computational imaging techniques be integrated into a microscope exhibit to engage and scaffold learners to ask productive questions, interpret what they see, and make evidence-based inferences from complex, dynamic images. Data will be collected and analyzed by coding think-aloud interviews with visitors concerning their interest in and description of the biological phenomenon observed; coding of think aloud transcripts of visitor questions types and answers, relevant features noted, inferences and scaffold use; and statistical comparison of holding time, questions asked, answers, inferences, and scaffold use. Project findings will seed more rigorous research on the combination of scaffolding and computational imaging techniques effective for supporting scientific observation in image-rich areas of science.
In concert with the overall strategy of the Advancing Informal STEM Learning (AISL) program to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, Principal Investigators from Oregon State University, University of Idaho, and University of Texas at Dallas, will study a range of data in online social networks to identify evidence of the long-term impact of informal STEM education. Tracking informal learners over time to understand the impact of informal learning experiences has been a longstanding, daunting, and elusive challenge. Now, with massive amounts of data being shared and stored online, education researchers have an unprecedented opportunity to study such data and apply data analytics and visualization technologies to identify the long-term, cascading effects of informal STEM learning. Research findings will inform the design and development of a data-analysis tool for use by education practitioners to improve STEM learning experiences online, through television and film, and at informal education institutions. An independent external critical review board of learning scientists, computer scientists, engineers, informal STEM education practitioners, participating partners, broadcast media professionals, and policymakers, will ensure a robust evaluation of the research and effectiveness and utility of the data analysis tool to improve practice. A summary report for the field will be written on the scientific and practical reliability and validity of the research and data-analysis model, and the value of the work for audiences beyond informal STEM education practitioners and policymakers. The research is contemporaneously relevant, advancing innovative use of data-mining and data-analysis processes to better understand how informal learners communicate STEM learning experiences and interact with STEM content over time, across a range of social networks. Investigators will research: 1) whether learners who engage in informal STEM education experiences further their learning through discussions and sharing of information in social media networks, 2) which types of data are present in social media that are relevant for understanding the cascading impacts of learning over time, and 3) how learning may evolve independently within shared social networks, which, if discovered, could provide a predictive computational model with implications for significant impact across both formal and informal education. Investigators will employ existing and modified data crawlers to search for key terms and phrases, assess spikes and deformations in posts, queries, and blogs, and experiment with their test data to find which types or configurations of keywords or search terms deliver the most reliable and accurate results. A variety of formats will be explored to test various strategies with participating partners and practitioners. Data will be visualized to represent the following dimensions of learning: a) Interest/Affect, b) Recommendations, c) Understanding/Knowledge-Seeking, and d) Deeper Engagement.
The Advancing Informal STEM Learning (AISL) program funds innovative projects in a variety of informal settings. The iSWOOP project aims to equip National Park Service interpretive rangers with visualizations and interactive approaches for communicating science in natural learning spaces. An advantage to locating STEM learning in national parks is that they serve as America’s outdoor laboratories, hosting thousands of research studies annually. Dynamic changes in the landscape, wildlife, and interspecies interactions offer countless avenues for inquiry. The project will build collaborations between park-based scientists, whose work frequently happens out of the public eye, and interpreters, who interact with millions of visitors annually. Based on pilot studies done at Carlsbad Caverns National Park, the researchers have extended this work to four more national park units, each with its own natural resources and research. Partners in this endeavor include Winston-Salem State University, Institute for Learning Innovation, and TERC. This project's goal is to establish a model for how national parks can be resources for science education and learning.
iSWOOP works by providing interpretive rangers with professional development. iSWOOP coordinates 1) opportunities for interpreters and scientists to work together in a classroom setting and in the field; 2) creates compelling visualizations, which can function as a jumping off point for conversations about the methods and relevance of park-based research; 3) ongoing opportunities for interpretive rangers to reflect on interactions with visitors and to experiment with questions that spark visitors’ curiosity in the moment and interest long-term.
The main goal of this proposed effort is to translate park-based research endeavors and results from the scientists to the park visitors in ways that make the process enjoyable, informative, and thought-provoking. Evaluation elements will be included every step in this process in order to not only determine if learning has occurred but also how effectively the science has been translated.
Most students who pursue math have chosen to do so by high school. Elementary and middle school experiences are thus vitally important in attracting students to STEM. Research consistently points to after-school as a golden opportunity to increase students' exposure to high-quality math learning opportunities and to develop the key influencers of math participation and persistence: interest and identity. However, more research on how and under what conditions after-school programs can foster these factors is needed. The role of identity in math education has been particularly neglected. The proposed research project addresses this gap by studying the implementation and outcomes of After-School Math PLUS (ASM+), an after-school math program designed to address all aspects of math identity and thus have a positive effect on this key influencer of math participation and achievement. "Improving Math Identity" is a Research-in-Service to Practice project funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The team will study the impact of ASM+ through a rigorous randomized controlled trial of 30 elementary-level after-school sites in South Carolina serving predominately low-income and minority students (15 treatment using ASM+; 15 control using Mixing in Math). Sites selected into the study must serve fourth and fifth graders and must operate five days a week. Through an implementation study, data will be collected in order to assess the program and understand the experiences of group leaders and students in the ASM+ program and at comparison sites. Data sources include surveys, interviews, observations, and administrative data collected from the treatment and control sites. The study will investigate how and to what extent ASM+ develops fourth and fifth grade students' math identity and increases math engagement and interest. It will explore whether increasing identity, engagement, and interest leads to greater skill development and academic achievement. This research is being conducted by IMPAQ International LLC, a social science and public policy research and evaluation firm in collaboration with Educational Equity at FHI 360, a global development and education organization. The research addresses the need to enhance students' math identity at an early age and, as a result, change students' educational and career aspirations. The ultimate goal is to broaden participation in STEM by underrepresented groups. Results will inform the development of interventions designed to motivate and retain students in STEM, particularly in informal settings. Knowledge gained from this research will be broadly disseminated to practitioners, researchers, program developers, and policy makers.
DATE:
-
TEAM MEMBERS:
Cheri FancsaliMerle FroschlBarbara Sprung
Due to geographical isolation, rural communities are often underserved by the informal STEM (science, technology, engineering, and mathematics) education system. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings including rural communities. Thus, this project will help to develop rural libraries and librarians into STEM learning centers and facilitators who will use community assets providing new horizons for youth on career choices and adults on an enhanced STEM knowledge base. Through online professional development exercises, the library staff will enhance their knowledge, enabling them to develop and support new STEM learning mechanisms in their communities. In this project, 110 rural libraries will be chosen from applicants to obtain advanced knowledge of how to facilitate STEM learning. It is anticipated that the staff will change from being resource persons to facilitators of STEM knowledge transfer. The project is a collaboration between Dartmouth College, Dominican University, the Institute of Learning Innovation, Dawson, Media Group, and the Califa Group. The research questions address: a quantitative assessment of rural librarian's STEM efficacy and professional identity, and a determination of the efficacy and impact of multiple forms of professional development and learning tools on rural librarians' ability to participate in and facilitate informal STEM learning.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This education project is a time sensitive opportunity related to the March 9, 2016 Total Solar Eclipse occurring in a remote part of the world located in Waleia in the Federated States of Micronesia, a U.S. affiliated Pacific Island nation. The path of totality is only 100 miles wide and passes through only a few Pacific Island nations ending in Hawaii. This project uses this unique phenomenon to educate a large US and international audience about solar science using multi-platforms with integrated video, social media, and public programs. Project deliverables include the production of a broadcast of the eclipse live from Waleia in the Federated States of Micronesia on March 9, 2016 making it accessible to hundreds of countries and millions of people around the world via satellite and live streaming on the Internet. Additional deliverables include on-site educational programs at science centers and planetariums as well as media resources for long-term use. These resources will enhance the interest and preparedness for additional public engagement when the 2017 eclipse occurs in the U.S. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in solar physics research by funding the construction of the world's largest solar telescope, the Daniel K. Inouye Solar Telescope which is slated to begin operations in late 2019 and operated by the National Solar Observatory. This new facility will revolutionize researchers' capability to study the Sun and its magnetic fields. This education project leverages that investment with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and worldwide through the Internet.
DATE:
-
TEAM MEMBERS:
ExploratoriumRobert SemperNicole MinorRobyn Higdon
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
There is a growing body of evidence that informal learning environments focused on science, technology, engineering, and math (STEM) disciplines cultivates an interest among young people in STEM careers and promotes understanding of STEM content knowledge and the scientific process. This project centers on the creation and validation of a theoretically grounded and empirically derived framework for professional growth and learning within the informal STEM learning (ISL) field ("Framework"). The Framework will be useful to ISL practitioners at any stage of their education or career by laying out the necessary skills, knowledge, and dispositions to guide their professional growth. While the immediate beneficiaries of the project will be ISL professionals themselves, the ultimate beneficiaries of the work will be the children, youth, teachers, and general public that engage with STEM experiences designed and implemented by a skilled and knowledgeable ISL professional workforce. The Association of Science-Technology Centers, Oregon State University's Center for Research on Lifelong STEM Learning, Pacific Science Center, University of Washington Museology Department and the Lifelong Learning Group of the Center of Science and Industry in Columbus, OH (COSI Columbus) will collaborate to develop the ISL professional framework. The Framework will be built from qualitative and quantitative empirical analyses of actual practices used by staff of science centers and ISL institutions, assessing perceived and actual needs at various career stages, as well as an analysis of the creation and use of similar learning frameworks in other professions. The project will be conducted in three phases: (1) Literature review, research synthesis, and "Developing a Curriculum" (DACUM) workshops to develop a preliminary framework; (2) Stakeholder review and feedback in order to improve the preliminary framework; and, (3) Creation of an online platform to share the final framework draft and conduct iterative testing for utility and ISL community acceptance. The project will address two current and pressing issues: (1) Ensuring that professionals working in science center-type settings have the necessary knowledge and skills to apply the substantial and growing evidence base in ISL, and (2) Understanding and supporting the needs of the full range of ISL professionals during their basic education and at particular points throughout their careers. Effective support for ISL professionals requires, at the most basic level, a fundamental understanding of the knowledge, skills, and dispositions needed by working professionals at critical points along their career pathway if they are to use evidence-based practice in their work. This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.