Democratic participation is supposed to be enabled by the skills of scientific literacy. But there are several models of democratic participation—deficit, deliberative, and more radical forms. The author of this paper argues that educators need to make explicit to students the political and hegemonic bases underlying these models as well as the role of scientific knowledge and decision-making. This paper may be of interest to ISE educators leading programs supporting scientific literacy through argumentation, participation, and activist projects.
The nature of science—not only what science involves, but also how it is understood by students—is a well-established area of research. Findings have long informed policy directives and the design of teaching and learning materials. Students’ understanding of the nature of technology, meanwhile, is less widely studied, yet such an understanding is arguably essential for active participation in a technology-rich and information-driven society. In order to examine students’ understanding of technology and thereafter to develop effective approaches to supporting engagement, educators need a
Education reform efforts often focus on material supplies and teacher knowledge of science, but this article points out additional constraints that teachers face within their schools and how the teachers from one middle school overcame them. These constraints have implications for what the researcher calls “inertial forces” that may derail social justice efforts. An awareness of these issues can help ISE educators in their efforts to design and lead professional development programs that support teachers.
How do students make connections between in-school and out-of school contexts? In this study involving the analysis of questionnaire responses of 1014 11th and 12th graders, the author found that out-of-school experiences are positively associated with the learning outcomes of science learning achievement, science interest, and self-efficacy. However, the analysis also showed that connections made by teachers to out-of-school experiences negatively correlated with student achievement.
In this study, researchers compared two different forms of inquiry, guided and open. The authors found that open inquiry was more effective than guided inquiry in building students' understanding about scientific procedures. For example, students engaged in open inquiry gained insights into the ways that scientists need to adjust their studies as new information or problems arise. The findings of this research will be of interest to ISE educators who are integrating inquiry-based instruction into their programs.
A study contrasting scientific reasoning skills of students with limited knowledge of the domain against more expert groups found little difference in nature of hypothesising and experimentation, but their lack of domain knowledge hindered non-experts' abilities to develop and test models. Findings highlight the need for support to understand models and organize knowledge.
This paper argues that comic books, comic strips, and other sequential art covering scientific concepts and stories about scientists can be used to good effect for science learning, especially for grounding scientific fact in social contexts. The paper includes a rich list of existing comics that practitioners can use in classes and programs for ISE audiences.
Combining science and literacy is becoming a common teaching strategy, which builds on the importance of professional scientists’ use of reading, writing, and speaking in their work. This paper consists of descriptions of efforts of three elementary teachers to teach literacy through science. The authors’ purpose was to theorize how and why to integrate literacy practices with scientific inquiry, to provide examples for educators, and to provide considerations for implementation, all of which may also be useful for informal educators.
In this study, researchers investigated the nature of three different modes of classroom talk—cumulative, exploratory, and disputational—to determine how these modes supported engagement and participation of college-aged students in psychology courses. The article is relevant to ISE educators in that conversation and verbal meaning-making often characterize programs such as science summer camps, afterschool programs, etc. The paper points out how such talk can be made more productive by making it more exploratory in nature.
Research shows that between ages 10 and 14, children’s interest in science declines sharply. This study investigates 10- and 11-year-old children’s attitudes toward science and relates it to identity, finding that children show a preference for either school (“safe”) science or what they see as grown-up (“dangerous”) science.
This study investigates specific challenges that students of color have in developing a personal identity related to science. The researchers examined how experiences in graduate school programs shaped the emergent identities of African-American women students in science and engineering. The study sheds light on the barriers cultural minority students might face in their pursuit of science in school and in careers, and suggests that educators might help to prepare students for these experiences.
Children’s drawings are often used by researchers as an indication of their conceptual understanding. But, to what extent is this approach valid? Do such drawings offer real insight, or are they simply clichéd representations produced by the children? In this study of children’s conception of ‘Earth,’ the researcher concludes that drawings have value only if they are used in conjunction with the children’s own narrative explanation of their drawing.