Size and scale are important concepts across disciplines, particularly with recent advances at the very large and very small ends of the continuum, which are also hard to teach and understand. Since not much is known about how people develop a sense of linear size and scale, particularly for children with visual impairments, the authors compared their accuracy to that of normal students, as well as examined their experiences learning about size in- and out-of-school. The authors speculate that educators may find students with visual impairments to have unique accessibility to concepts of the
Primary and early childhood teachers are generally regarded as lacking competence and confidence in teaching science. But rather than pointing the finger at teachers, this paper suggests that the prevailing philosophy of pedagogy may be to blame.
In this study, students who participated in science internships were found to gain a better understanding of authentic science but did not have complete representations of scientific practice. Students' communication within presentations was seen to be mediated by the audience they were presenting to and what they perceived to be important. Consequently, students reported stereotypical images of science. This paper might be of interest to ISE educators developing lab and internship programs for students.
In this paper the analysis of science lessons in early-years classrooms shows that the lessons did not promote scientific investigation or make connections between the ideas involved and the material world. Teacher directed scientific activities observed had limited value in terms of scientific inquiry and consequently did not foster the development of ideas or support the formation of hypotheses. The paper raises questions about how to best promote scientific practices, including through continuing professional development.
This study is based upon a body of work that characterizes individuals as primarily empathizers, systemizers, or an equal balance of both. Systemizing describes the ability to understand the world in terms of a system, whereas empathizing is the ability to identify and perceive the mental states of others. In this study, the authors examined whether gender played a role in determining motivation for science learning or whether personality attributes (also known as “brain type”) – that is, whether more a systemizer or an empathizer – were more significant.
This study makes the case for the ways in which children's everyday experiences are foundational to learning science. The authors argue for the importance of instruction that capitalizes on the diverse experiences and ways of thinking that children bring to the classroom. The article has implications for the design of learning activities in informal settings, where, in the absence of testing pressures, educators might be more free to engage children in ""science talk"" to support deeper meaning-making.
This study examines how early elementary school-aged children develop theories of the origin of species. It may interest ISE educators who are developing strategies for engaging their audiences with theories and processes of evolution. The article provides background on the research literature about teaching and learning of evolution. The results of this study suggest that direct instruction or interactions with Darwinian models, even at a young age, can support children's understanding of evolutionary theory, and may be as important as developmental or cultural concerns already documented in
This study discusses a process that the authors have termed ‘pedagogical link-making’. This may be described as the way in which educators and learners establish connections between ideas as part of the ongoing interactions comprising teaching and learning. This process has clear implications for educators: by supporting knowledge building, promoting continuity, and encouraging emotional investment, educators can help learners make links between ideas and experiences.
This article reports the results of a design research experiment in professional development for teachers of middle school mathematics. The authors report on how they developed their programs to account for three underlying conceptual challenges to their efforts: (1) the institutional contexts that teachers worked in, (2) the ways in which the learning developed in and through the community of practice, and (3) the relationship between teachers' learning in the program and teachers' teaching in their classrooms. Especially because of the different institutional cultures found in ISE versus
This article describes an afterschool science program targeting girls from communities underrepresented in the sciences. The authors argue for the need for such programs to build on research findings that are relevant to girl-specific programs, which they summarize in the article. This article provides a highly condensed overview of research findings and illustrates how the authors have applied these findings to their program design. It could be of interest to ISE educators seeking to design STEM programs for girls.
The authors claim that if the students are given an overdose of information, their memories become ‘overloaded’; for example, engaging in an activity in a professional science laboratory. To counter this negative impact, the study here suggests ways to lessen the ‘cognitive overload’ and inform instructional design.
This paper summarizes key design elements for programs for middle-school-aged children, addressing issues of relationships, relevance, reinforcement, real-life projects, and rigor. The authors argue that these five components take into account the intellectual and emotional developmental needs of this age range.