Skip to main content

Community Repository Search Results

Current Search

resource project Media and Technology
Child Trends is a nonprofit organization focused on improving the lives of children and their families by conducting research and sharing the resulting knowledge with practitioners and the public. In this project, Child Trends will conduct research and development to launch a Child Trends News Service aimed at providing news reports that feature social science child-centric research. The resulting work is designed to improve outcomes for at-risk children, particularly Latinos, the largest and fastest-growing minority group among U.S. children. Working with a professional news syndication company, the Child Trends News Service will produce engaging reports for key news media outlets that feature the latest actionable social science research related to behaviors that help mitigate negative child outcomes associated with poverty, lack of education, violence, among other challenges. Child Trends will draw attention to the reports through social media and outreach to stakeholders. By airing these reports on local television news programs in English and Spanish, millions of people will have greater access to this information. This is early R&D work to demonstrate that local television stations will air these stories and to examine the audience impact—how does accessing this social science research through preferred media channels influence news audiences’ knowledge and attitudes toward specific social science research? The study will also delve deeper to better understand how news might, or might not, motivate behavioral change. The study will provide valuable lessons to the informal science education and the STEM communication science field.

The overarching aim of this project is to use commercial news to reach populations, especially Latinos, who have historically been underrepresented in science, technology, engineering and math (STEM) education and careers. The goals of the project are to:
* Leverage mass media news outlets to effectively communicate developments in social science research on child well-being and development to Latino audiences.
* Advance the field of informal STEM learning by exploring how the public interacts with actionable social science child research.
* Expand the reach and application of the news products through strategic collaborations with provider organizations serving at-risk Latino families; the child research and STEM fields; and other organizations working on Latino family issues.
Activities include the development and formative testing of the news service, the qualitative and quantitative testing of the news service's impact on audiences, and evaluation of the implementation of the project's components. The quantitative research, using a control group and treatment group, will work to establish preliminary evidence that the Child Trends News Service will result in changes in viewers' knowledge, attitudes, and intent to adopt behaviors related to child-centric social science research. The Child Trends' project team will be informed by an Advisory Board and Technical Working Group as well by working closely with Abriendo Puertas, the largest U.S. parenting education program for low-income Latino parents. Child Trends will partner with Ivanhoe Broadcast News to produce and distribute the materials. Group I&I Consultancy will evaluate the project. In year-two, Child Trends will produce a research brief on lessons learned and research outcome measures. The proposed research and development will be conducted over a two-year period; findings will inform ongoing service and additional research.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Alicia Torres
resource project Exhibitions
The project will develop and research a new system that bridges the advantages of physical and virtual worlds to improve young children's inquiry-based science learning and engagement in a collaborative way. The project will use innovative technology and successful techniques developed for adaptive tutoring systems and bring this core research into informal learning settings where they haven't been applied before, with the goal of increasing engagement, learning and deep inquiry-based understanding in these environments. Museums and similar informal learning settings offer opportunities for children and families to learn together in an engaging way. However, without learning supports provided by people, signage, or technology, people often miss the point of the learning activity in museums. The project will develop a new genre of "intelligent" interactive science exhibits that combine proven intelligent tutoring system approaches with camera-based vision sensing to add a new layer to hands-on museum exhibits. This intelligent layer provides personalized interactive feedback to museum visitors while they experiment with physical objects in the real world. The project is a collaborative effort led by the Human Computer Interaction Institute at Carnegie Mellon University in partnership with the University of Pittsburgh Learning Research and Development Center, Children's Museum of Pittsburgh, and Carnegie Science Center. It is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

The project will research whether and how learning principles and adaptive, computer-based technologies that are effective in formal school learning be made effective in an informal museum experience with hands-on activities to enhance the learning and engagement of children and parents. The system will use intelligent camera sensing that tracks and notices children's interaction in physical and virtual spaces and provides adaptive personalized feedback via the help of an engaging character. It guides the children as well as the parents to engage in productive dialogue, helping shape a better parent-child interaction. To investigate this, the project will further develop an innovative mixed-reality system and smart adaptive system that gives personalized feedback to visitors based on their actions, guiding them to understand the world around them like a scientist. The project will gather data on learner behaviors in mixed-reality experiences in informal settings to inform how to better design intelligent science exhibits and derive patterns to support key outcomes, including learning, engagement, collaboration, and productive dialogue. The project will also research the application of these design patterns across different science content areas.
DATE: -
TEAM MEMBERS: Ken Koedinger Scott Hudson Kevin Crowley Nesra Yannier
resource project Media and Technology
The Fluid Earth Viewer (FEVer), an interactive and visually appealing web application that will allow users to visualize current and past conditions of our planet's atmosphere and oceans will be built via this award. This free web application, available to anyone with an internet connection, will directly impact approximately 2,000 individuals in-person through three field tests and is expected to reach many more online.

FEVer will be an extension of an existing open-source web application, and the PIs will add polar data sets, extended options in the user interface, and the ability to view historical climate/weather data to the existing "earth" app. It will be a vehicle of modern Earth science communication, making information most often used by the scientific community accessible and engaging to broader communities. In particular, it will provide hands-on visualization of the important climatic role of the polar-regions, their connections to lower latitudes, and the changes they are undergoing. A companion website, FEVer-Ed, will provide background, educational support, and opportunities for additional learning through a gallery of historically interesting atmospheric and oceanic events. FEVer will serve as a gateway to data sets that have otherwise been inaccessible to audiences outside of the research community. While a number of large data sets are included in this proposal (regional and global operational weather models/reanalyses), the platform is scalable to include other data such as ice sheet and glacier dynamics.

This project is partially funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Jason Cervenec Aaron Wilson
resource project Public Programs
The project will conduct a nation wide study to address three broad questions:

(1) How does the public view zoos and aquariums and how do these institutions affect STEM (Science Technology Engineering Mathematics) learning outside their walls?

(2) How do visitors experience zoos at different stages in their lives and how do zoo visits affect their knowledge and perspectives concerning environmental issues and conservation?

(3) What are the entry characteristics of visitors and how do those characteristics play out in behaviors during a visit?

The project is designed to advance understanding of how informal STEM learning emerges through the intersection of institutional pedagogy and learning goals and the characteristics of individuals and their social and cultural backgrounds. As the first institutional study that advances a field-wide research agenda, the project will map how to implement a national collaborative effort that can help refine program delivery and cooperation between zoos, aquariums and other STEM learning institutions.

The study will describe zoo and aquarium visitors based on a broad understanding of demographics, group, and individual perspectives to expand understanding of how these factors influence visitor learning and how they view the relevance of educational messages presented by zoos and aquariums. The project will result in reports, workshops and a handbook presenting findings of practical value for educators, a research platform and research tools, online discussion forums, and directions for future research. The project, led by New Knowledge Organization (NKO), will be carried out through the collaboration of NKO with other informal research organizations and the Association of Zoos and Aquariums (AZA) with its 230 informal science learning institutional members. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
DATE: -
resource project Public Programs
Researchers at Georgia Tech and staff at the Center for Puppetry Arts in Atlanta will address the following problem: The growth of computing calls for increased teaching of basic hardware skills, but engaging students beyond those who are already interested in STEM fields is difficult. Emphasizing cultural context through personal expression has shown to attract new audiences such as women and minorities; however, balancing accessibility and educational effectiveness remains problematic. Current educational tools often use "black boxing" to simplify access, to protect the underlying functionality, and/or to stay commercially competitive. Innovations are needed where the basic skills of design and making, along with new educational models, can support students' exploration of everyday electronics and critical thinking. The team will test an after-school model that could be applied in cultural institutions and other venues that would provide students in 4 - 8 grades with multiple computer/electronics-driven puppet design and building workshops. These workshops will provide opportunities for basic hardware and electronics prototyping, personal cultural expression, and performance.

The exploratory research and development method involves three steps: the students develop a story-line (narrative) that will incorporate puppets; they learn and apply basic electronics and mechanical crafts to design, build and test their puppets; and they perform their shows to other participants and their families. Over the course of the project, there will be five workshops: two pilot tests (to test feasibility and design), one mid-project evaluation workshop (to evaluate and re-iterate), and two final workshops conducted by educators, where the research team only observes (to test for transferability). Data collection throughout this development cycle will include video and sound recording, still photography, field notes, pre- and post-questionnaires, and the production of puppet "artifacts" during the workshops. In addition to the data collected in the workshops, the project will produce design documents and educational guidelines, as well as other media (such as instructional video clips), which will be disseminated to educators and researchers.

The project has been successfully concluded. It included additional pilot workshops with puppetry experts and educators in addition to the scheduled development and final evaluation workshops. Overall, the project has led to publications in both educational as well as performance/ game- and interface-related events.

The project also published material on the puppet designs and their possible adaptation to educational settings on the project web site, which also include video documentation. More information is available at: http://dwig.lmc.gatech.edu/projects/prototypingpuppets/
DATE: -
TEAM MEMBERS: Michael Nitsche Crystal Eng
resource project Public Programs
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE: -
TEAM MEMBERS: John Volin David Moss David Campbell Chester Arnold Cary Chadwick
resource project Media and Technology
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.

Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne
resource project Professional Development, Conferences, and Networks
Informal Science, Techology, Engineering, and Mathematics (STEM) institutions seek to contribute to a scientifically literate culture, which includes new and innovative learning opportunities, a diverse community of scientists and science educators, equitable treatment for all, and the development of a well-trained workforce. In order to achieve these goals, informal STEM institutions must provide learning experiences that are welcoming and productive for all learners. The iPAGE model is a comprehensive program that prepares teams within informal STEM institutions to work with their colleagues to make their institutions more inclusive learning environments in which to learn, engage in, and identify with STEM. The project incorporates learning modules, workshops, site visits, and institution-specific activities all geared to build knowledge, awareness, and capacity related to creating inclusive environments at informal STEM institutions. The core iPAGE model is based on the US Department of Agriculture's agricultural extension service. It includes a Knowledge-to-Action approach, in which individuals adapt what they learn to local contexts by assessing barriers to knowledge use, selecting and implementing interventions, evaluating outcomes, and sustaining ongoing efforts. Through cycles of design-based iteration, the project will improve its practice, learning modules, and theory of action. Through surveys, interviews, and case studies, the research team will document learning, barriers to implementation, and culture change as teams and institutions seek to become more welcoming, diverse, and inclusive institutions. This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: E. Liesl Chatman Amy Grack Nelson Timothy Sheldon
resource project Media and Technology
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.

The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Michael Horn Brian Magerko Jason Freeman
resource project Public Programs
The overall goal of this project is to develop and evaluate a community model of informal genomic education that is culturally and educationally appropriate for low-literacy Latino adults born in Mexico and Central America (MCA). The community engagement strategy and materials created will be designed to lead to three learning outcomes: increased interest and engagement with genomics, change in science, technology, engineering, and mathematics (STEM) attitudes and self-identity, and increased understanding about gene function and the human genome. The model created in this project will have the potential to inform other educational efforts, nationally. Semi-structured in-depth interviews will be conducted in Spanish with 60 MCA Latinos to delineate beliefs and knowledge about genetic and genomic concepts and transmission of traits. Interview transcripts will be systematically analyzed to identify explanations about trait transmission, and familiarity with genetic and genomic concepts. Variation in responses across geographic and cultural regions will be noted. Knowledge from this analysis will be used to develop a meaningful community-based learning program about genomics. Lay community educators will facilitate informal learning with MCA adults about genetics and genomics, including gene-environment interactions. This project will use information about environmental exposures (e.g., residential pesticides) as a vehicle to pique participants' interest and illustrate genetic and genomic content. It will compare outcomes for 100 participants who receive practical strategies only to reduce negative and increase positive environmental exposures, respectively, to 100 participants who also receive genetic and genomic content. The strategy and materials will be disseminated through journal articles and presentations at meetings that focus on informal STEM education. The process and content will be rigorously evaluated throughout the project. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Joanne Sandberg
resource project Exhibitions
Informal learning, and by extension, museums, are inherently emotional experiences, evoking feelings of awe, excitement, and curiosity. Oftentimes, museum professionals have prioritized traditionally positive emotions such as excitement and interest as being the most desirable and useful in supporting museum learning. However, prior research into naturally occurring emotions at museums found that some visitors who experienced negative emotions, such as confusion or frustration, at exhibits also reported deeper engagement and overall feelings of satisfaction (Rappolt-Schlichtmann et al., 2017). Based on these findings and similar results from formal education (D’Mello et al., 2014), this project team has worked to develop and refine a framework of strategies for creating exhibits that invoke and support visitors through the complex emotional state called productive struggle (PS) which is defined as a three-part emotional arc characterized by: 1) disequilibrium (experienced emotionally as emotions like confusion, frustration, surprise, or unease) that arises from encountering a challenging task, phenomenon, or idea, 2) persistence through the task which is supported by exhibit design scaffolds, and 3) an emotionally productive resolution tied to the source of disequilibrium or an overall sense of effortful achievement. In deliberately attending to and supporting a range of negative and positive emotions in museums, visitors can gain access to a wider variety of complex emotional experiences, including those critical to STEM learning, and have potential to broaden participation in STEM by supporting learners' diverse emotional needs and preferences.

This multidisciplinary project team consisting of researchers and exhibit professionals utilized a design-based research (DBR) process to develop, test, and refine a definition of museum-based productive struggle, and create a framework of design strategies that support PS. Three physical exhibits and a virtual exhibit were created during this multi-year project. Additionally, a summative research study was conducted with 105 youth ages 10-17 to explore: 1) whether visitors experienced the expected emotional arc of PS; 2) how exhibit design strategies supported PS; and 3) the extent of visitors’ learning and engagement at these PS exhibits.
DATE: -
TEAM MEMBERS: Christine Reich Jose Blackorby Elizabeth Kollmann Gabrielle Schlichtmann Samantha Daley Clara Cahill Katie Todd Sunewan Paneto Sarah May Becki Kipling Katharina Marino Beth Malandain Sara Castellucci Kim Ducharme Amanda Cook
resource project Public Programs
Rural communities across the Nation are, in general, underserved in terms of the various forms of STEM education. Clearly, they are under-represented in the realm of contemporary STEM subjects often because they are geographically isolated and cannot travel to cities where there are Science and Museum Centers for informal education opportunities. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This award will, in a collaborative effort within the community, bring STEM activities to selected communities in Arizona. Among the initial activities, there will be a STEM festival highlighting aspects of the community and its assets in an effort to gather support and begin to give perspective on identity for an extended effort of longevity. Further, these communities will be networked to facilitate discussion and to enhance effectiveness.

This project will develop STEM activities and STEM learning within a selected community by giving the community and its residents identity and opportunities for youth development and career choices. The selected communities in Arizona represent a diverse group that includes Native Americans and Latinos. In collaboration with community residents, a designed plan will be established that satisfies the needs and opportunities that can be derived from the extant community assets whether it is mining, tourism, or government facilities. Evaluation efforts are set to determine what the key features and methodologies are that facilitate STEM knowledge acquisition for each rural community. This project represents seminal and foundational work in the area of rural informal STEM education. Researchers will explore the following questions: 1) understanding how rural communities currently perceive, access, and engage in informal science learning, and the extent to which they identify themselves and/or their community in relation to science; and 2) the extent to which relevant, place-based networks can increase public awareness of local STEM assets, resources, and opportunities, and foster a science-related identity at both the personal and community level. These data will be compared to data on other rural community projects in the AISL portfolio. The partners in this effort include the Arizona Science Center, community leaders from four rural regions in Arizona, Arizona State University, and the Center of Science and Industry.
DATE: -
TEAM MEMBERS: Jeremy Babendure Andy Fourlis James Middleton Jill Stein