This study was designed to examine narratives that families recorded shortly after visiting the Tinkering Lab at the Chicago Children’s Museum. We view this work as intersecting with the event memory literature concerning variations in parental reminiscing styles for talking about past events (Fivush, Haden, Reese, 2006). The study also connects with efforts to assess learning in museum settings (Haden, Cohen, Uttal, & Marcus, 2016).
DATE:
TEAM MEMBERS:
Lauren PaganoDanielle NesiDestinee JohnsonDiana AcostaCatherine HadenDavid UttalPerla Gamez
This presentation was a part of a workshop/paper presented at the annual meeting of the Association of Children's Museums. The presentation includes strategies on how to increase STEM learning through tinkering experiences at museums.
Conversations shortly after hands-on learning experiences can consolidate children’s fleeting patterns of engagement with objects into long-lasting memories. Moreover, conversational reflection can add layers of understanding of events beyond what is available from direct experience with objects alone.
For the past several years, my colleagues and I have partnered with practitioners at Chicago Children’s Museum on projects to build knowledge and a research base for educational practices in museums. One focus of our work together concerns family engagement in conversational reflections about
Experiences-including museum experiences- that are packaged as stories are more likely to be remembered by both children and adults. For museum visitors, the simple act of narrating what they've done even no more than ten minutes ago can make their experience more meaningful and memorable. How connections are made between a museum experience and lasting learning, are driving the collaboration between practice and research at the Chicago Children's Museum and Loyola University Chicago.
This paper summarizes a study from 1987 on the Exploratorium's Explainer program. The Explainers serve as the primary staff available to the public on the floor of the museum. The purpose of the study was to determine whether science museums, through such programs, can significantly affect students' social development, their attitudes toward science, and their interest in science, teaching and museums. The study examines the impact of the Exploratorium on a group of students who may spend as much time in the museum as in school, and examined the program to understand its impact on the
This guide offers insight into community engagement practices and activity development from our making and equity project, Making Connections. It includes documentation and recommendations for work that is designed to engage community partners as equal partners, and is written most of all for other practitioners.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Innovations in Development project will develop and test a model for audience assessment that STEM professionals can use during their public engagement efforts. These on-the-spot assessments will allow scientists to monitor audience understanding and use this to make immediate improvements to their activity. This project fills a critical gap in the field of public science communication as expressed by outreach scientists and by the professional and academic organizations that train them. Project partners include The Astronomical Society of the Pacific, Oregon State University, Pacific Science Center, and the National Radio Astronomy Observatory. Research questions include: (1) How and under what conditions can scientists, regardless of discipline, learn to build assessment into outreach activities? (2) To what degree are scientists willing and able to change their outreach activities to include assessment to ascertain audience attentiveness or understanding? (3) To what degree will scientists be able to adjust their outreach and engagement efforts based on audience feedback, and what support do they need to do so? (4) With constraints on their time and resources, how can the model help scientists conduct audience assessment on their own? (5) Are audience members finding events more enjoyable and fruitful that use assessment techniques? Several iterative rounds of R&D will be used in the spiral design-based approach. A group of Design Testers will start each of the iterative cycles for the initial development and testing techniques, associated training, and support. Later phases will use Field Testers using a rubric for usability, validity, and reliability of various strategies. The summative evaluation of the project will begin early and add data over the life of the project. A mixed methods approach will be used including surveys of scientists once each year after they have participated in the Prototype training. Descriptive and inferential statistics will be used to document the extent to which the project has achieved its intended outcomes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.
The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Pilot and Feasibility study will investigate strategies for enhancing the mathematics in museum-based making and tinkering activities and lay the foundation for a full research study on broadening family participation in mathematics through making. This proposal builds directly on the NSF-funded Math in the Making convening. During this convening, questions about how to authentically highlight and enhance the mathematics in making and tinkering experiences, and how different math-enhancement approaches might influence learner experiences and outcomes, emerged as critical issues for researchers, educators, and mathematicians alike. The project aims to provide a practical lens to help researchers and educators connect topics across STEM with making and tinkering experiences. The project also seeks to advance theoretical understandings of museum-based learning by exploring ways that activity design and facilitation strategies influence how visitors understand the nature and goals of the experience and, in turn, how these visitor experiences shape learning outcomes. The project is designed to explore the most promising of these math-enhancement strategies in more depth, to propose as a next project and develop a theoretical framework for understanding and describing how these strategies influence how families understand and engage with the mathematics in maker experiences. Through several culturally-responsive approaches developed in collaboration with community-based organizations, the project will research how mathematics in maker experiences influences participant engagement and learning. The project will culminate in the design of a research study. Reports and resources developed by the project will be broadly disseminated to researchers, mathematicians, and educators. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Museum of Science will launch the "Collaboration for Ongoing Visitor Experience Studies" (COVES) project to construct an infrastructure for collaboration, which will unite science centers across the country in the systematic collection, analysis, and reporting of visitor experience data. The COVES program will develop common instruments for studying visitors in science museums and provide staff training on how to use these instruments and how to make sense of findings. The collaborative effort will enable participating science centers to become data-driven organizations focused on their audiences and will allow museums to learn from one another.
Exploration Place, with funding from the National Aeronautics and Space Administration (NASA), contracted RK&A to conduct a summative evaluation of Design Build Fly, an exhibition and program series that explores what happens behind-the-scenes in Wichita’s aircraft plants. The goals of the study were to identify how visitors use the exhibition, explore what meaning visitors make from Design Build Fly, and understand to what extent visitors’ meaning-making aligns with intended outcomes.
How did we approach this study? RK&A conducted timing and tracking observations of visitors to the