Informal environments provide students with unique experiences that allow them to actively participate in activities while promoting a positive attitude toward and an increased interest in science. One way to enhance informal science experiences is through the integration of mobile technologies. This integration is particularly useful in engaging underrepresented students in learning science. Our informal environmental science program engages underrepresented, fifth-grade students in an informal learning environment supplemented with mobile tablet technology (iPads). The purpose of this study
This poster was presented at the NSF AISL PI meeting in Washington D.C. in 2014. The poster describes the impact of Be A Scientist and explores Iridescent's strategic vision.
Creating Museum Media for Everyone is an NSF-funded collaborative project of the Museum of Science, the WGBH National Center for Accessible Media, Ideum, and Audience Viewpoints, to further the science museum field's understanding of ways to research, develop, and evaluate digital interactives that are inclusive of all people. As a part of this effort to enable museums to integrate more accessible media into their exhibits to make them more welcoming and educational for visitors with disabilities as well as general audiences, this paper provides an overview of approaches to media accessibility
A partnership between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods.
The goals of this workshops project are: (1) to provide collaborative professional development opportunities for 24 early professional social science researchers, and science writers and communicators, and (2) to foster a stronger and durable "community of practice" between the fields of science policy research and science communications for the purposes of helping the general public better understand and become engaged with major issues of science and innovation policy. In addition to the PI and co-PI, involved in the work will be: twelve science policy scholars and twelve science communications professionals (writers, bloggers, museum educators, and others); mentors; editors of major science publications; several guest observers from university writing programs around the country; and graduate students who will help document and video record the activities. Project activities include a suite of opportunities: two, four-day workshops; mentorship support; publication in hard copy and online of their articles in a special edition of Creative Nonfiction magazine; and public engagement experiences at Science Cafes around the country. These workshops and accompanying activities will continue to develop a strong foundation for the establishment of nascent collaborations of science policy scholars, science communicators, and informal science education professionals, whose partnerships should position them better to inform and engage the public on important science policy issues of our times.
In this Connecting Researchers to Public Audiences (CRPA) project, the researchers from Florida State University, in partnership with their local public broadcasting station (WFSU-TV), will engage the audience in an exploration of the ecosystem services of coastal habitats. The main content focus is the important linkages among coastal foundation species (oysters and salt marsh plants), the human and ecological communities they support, and the ecosystem services they provide. In particular, the project illuminates the roles of biodiversity and consume-prey relationships in influencing ecosystem services, while conveying the excitement of ecological research. The complementary target audiences are the general WFSU viewers and listeners, groups that actively use or promote coastal habitats, and graduate students at Florida State University and Florida A&M University. The main deliverables include: 1) a TV documentary, a series of short videos and radio spots; 2) a research blog; and 3) a science communication three-day workshop for current and future researchers to converse with the public about key learning goals. In addition, in year two of the grant, the PIs will deliver a monthly seminar series focused on effective communication skills for scientists. The resulting documentaries will be broadcast by WFSU and offered to other PBS stations via APT and/or NETA. Other materials will be made available via PBS Learning Media and other portals. Community group project collaborators, such as SciGirls and the Science Cafe, will extend the reach and impact of the project. The project design includes formative evaluation which will focus on ways to improve the accessibility and usability of the research blog, and summative evaluation which will review each component of the deliverables. Results of the summative evaluation will be posted on www.informalscience.org. This proposal addresses the communication gap between scientists and the public by simultaneously targeting both audiences with deliverables designed to promote dialogue and understanding. By highlighting compelling natural history information and key ecological concepts associated with current research, the project will provide engaging educational experiences to a wide audience. These activities will not only educate the public about specific research but also demonstrate the process of science. Finally, the proposed seminar for students, along with the other informal learning opportunities throughout the project, will enhance the communication skills and outreach abilities of a diverse group of graduate students.
DATE:
-
TEAM MEMBERS:
Randall HughesDavid KimbroRoberto Diaz de Villegas
resourceprojectProfessional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE), a cooperative agreement with the National Science Foundation Advancing Informal STEM Learning (AISL) program, is a partnership of the Association of Science-Technology Centers with faculty and professionals from the University of Pittsburgh Center for Learning in Out-of-School Environments (UPCLOSE), Oregon State University (OSU), the Great Lakes Science Center, KQED Public Media, advisors and other collaborators. CAISE works to support and resource ongoing improvement of, and NSF investments in, the national infrastructure for informal Science Technology Engineering and Mathematics (STEM) education. CAISE's roles are to build capacity and support continued professionalization for the field by fostering a community that bridges the many varied forms in which informal STEM learning experiences are developed and delivered for learners of all ages. To that end, CAISE activities also include: creating field-driven evidence databases about the impacts of informal STEM education; facilitating federated searches of those databases; furthering dialogue and knowledge transfer between learning research and practice; working to enhance the quality and diversity of evaluation knowledge and processes; and helping STEM researchers improve their efforts in informal STEM education, outreach and communication. For Principal Investigators (PIs) and potential PIs, CAISE provides resources that can assist in the development of evidence-based proposals. It also facilitates and strengthens networks through PI meetings, communications, and other methods that encourage sharing of deliverables, practices, outcomes and findings across projects. For the AISL Program at NSF, CAISE is assisting program officers in understanding the portfolio of awards, identifying the portfolio's impacts in key areas, and integrating the program's investments in education infrastructure.
This pathways project will study how audiences in public spaces, in this case those in a museum setting, relate to and make sense of large data displays. The project is preliminary to development of a traveling, hands-on exhibition enabling users to create and utilize representations of big data displays such as maps and charts. As the test case, the project will use science maps that provide an overview of science generally and specific areas of STEM, charting and exploring the history and future of science and technology. The data collection portion of the project will take place at the New York Hall of Science, the Marian Koshland Science Museum, COSI in Columbus, Ohio, and WonderLab Museum in Bloomington, Indiana. The project will create a foundation for the design of museum exhibits and educational programs that teach museum visitors how to explore, engage and make better sense of big data. The project is potentially transformative because big data is becoming ubiquitous and making sense out of large data displays is necessary in order to understand big data sets.
This Connecting Researchers to Public Audiences project plans to create a multimedia website, Into the Rift, a virtual journey to Lake Tanganyika in East Africa, along with teaching resources and a dissemination campaign. The content will focus on the high freshwater diversity of the 2nd largest lake in the world; the diverse array of cichlid fish in the lake; and the effects of overharvesting and global warming on the lake's ecosystem. The project's intended learning outcomes are that viewers will have enhanced awareness and understanding of: 1) the ecosystem-scale processes that support life in lakes; 2) the importance of intact natural ecosystems for the well-being of human societies; 3) the techniques that scientists use to learn more about the ecosystem-scale movement of matter and energy; and 4) potential career paths in STEM fields. These learning outcomes correlate to the current and proposed science standards, which provide a structure for content development and outcomes assessment. The project will be designed by the collaboration of an ecologist (the PI Dr. Yvonne Vadeboncoeur), education specialist (co-PI Dr. Lisa Kenyon), communication specialist (co-PI Dr. Elliot Gaines) all from Wright State University, and a media lab (Habitat Seven), and informed by formative evaluation conducted by Edu, Inc. The website, hosted by a guide from East Africa along with the PI, will be presented in three languages (Spanish, French, and Swahili) in addition to English. Edu, Inc. will also conduct a summative evaluation of all the components of the project with respect to the four intended learning outcomes and their related concepts as well as analyze the outcomes of the dissemination strategies. This CRPA uses internet technologies to make abstract scientific concepts and a largely inaccessible research location available to a wide audience. The project intends to inform and engage the audience with an aggressive use of social media in addition to the website. Into the Rift will provide material for both the lay audience and classrooms, including access to authentic scientific data to compare the Lake Tanganyika data to environmental data collected from the U.S. Great Lakes. Additional collaborations with established organizations, including Crossing Boundaries, Conservation Bridge and Community Bridges, will expand the reach and impact of the project to diverse audiences. The multi-lingual approach extends the reach to potentially an even greater audience both within and outside the U.S.
This CRPA project is about research on climate change impacts in the Amazonian rain forest and about motivating youth to consider science as a career objective. The project is an exhibit in Biosphere 2 in Arizona wherein a rain forest is maintained and will be used to augment the exhibit of large photos of scientists doing research. Particular attention will be paid to female scientists to motivate young girls. Biosphere 2 and the Girl Scout Council of Southern Arizona will collaborate to attract girls through free admission days to Biosphere 2. These large photos will be equipped with sound and video so that as a visitor approaches the photo, the sounds of the forest as well as the researcher(s) will be heard. At this point the researcher, in the photograph, will begin a monologue with the visitor explaining what scientists are investigating and who the other workers are. In this monologue, the researcher will explain what they are doing specifically, why they are investigating this subject, and what they plan to derive as a scientific result. The exhibit will consist of fifty very large photographs (3x5 feet) with sound access via smart phones and headsets. In addition, there will be hands on equipment and docents for questions and discussion. The venue receives about 100,000 visitors per year consisting mainly of families, tourists, and clubs. Through this exhibit, the researchers intend to motivate youth to develop interests in STEM topics. Girls are the main target audience. For families and tourists, the exhibit communicates the message of how science is being used to determine the effect of climate change on rain forests and how that would affect other aspects of weather and the global environment.
DATE:
-
TEAM MEMBERS:
Scott SaleskaBruce JohnsonJoost van HarenJennifer Fields
resourceprojectProfessional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.