Skip to main content

Community Repository Search Results

resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project would expand the informal STEM learning field's understanding of how to use digital science media to increase STEM educational experiences and opportunities for English language learners. Across the U.S. there are significant STEM opportunity and achievement gaps for English learners with varying levels of English proficiency. This is at a time when the U.S. is facing a shortage of STEM professionals in the workforce including the life and physical science fields. This project aims to close these gaps and improve English learners' STEM learning outcomes using digital media. Within community colleges, there are multiple site-based programs to provide content to help English learners to learn English and to improve their math and literacy skills. Involving the state community college networks is a critical strategy for gathering important feedback for the pedagogical approach as well as for recruiting English learner research participants. The team will initially study an existing YouTube chemistry series produced by Complexly then produce and test new videos in Spanish using culturally relevant instructional strategies. The target audience is 18-34-year-old English learners. Project partners are Complexly, a producer of digital STEM media and EDC, a research organization with experience in studying informal STEM learning.

The project has the potential to advance knowledge about the use of culturally relevant media to improve STEM opportunities and success for English language learners. Using a Design-Based Implementation Research framework the research questions include: 1) what are the effective production and instructional strategies for creating digital media to teach science to English learners whose native language is Spanish? 2) what science content knowledge do English learners gain when the project's approach is applied to a widely available set of YouTube videos? and 3) how might the findings from the research be applied to future efforts targeting English learners? The project has the potential to significantly broaden participation in science and engineering. Phase 1 of the research will be an exploration of how to apply strategic pedagogical approaches to digital media content development. Interviews will be conducted with educators in 3 focal states with high numbers of English language learners (NY, CA, TX) to reflect on pedagogical foundations for teaching science to English learners. A survey of 30 English learners will provide feedback on the perceived strengths and weaknesses of a selection of existing YouTube chemistry videos. Phase 2 will create/test prototypes of 6 adapted chemistry videos. Forty students (ages 18-34) will be recruited and participate in cognitive interviews with researchers after viewing these videos. Based on this input additional videos will be produced with revised instructional strategies for further testing. Additional rounds of production and testing will be conducted to develop an English learners mini chemistry series. Phase 3 will be a pilot study to gauge the science learning of 75 English learners who will view an 11-episode chemistry miniseries. It will also identify gaps in expected learning to determine whether any further adjustments are necessary to the instructional approach.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kelsey Savage Ceridwen Riley Stan Muller Heather Lavigne Caroline Parker Katrina Bledsoe
resource research Media and Technology
With the world in the midst of the COVID-19 pandemic, children are often having or expressing worries and fears. Their caregivers -- parents and those who are providing direct care for children -- are seeking trusted sources of information to help them explain this disease and help ease children’s worries. This resource guide reflects some of the work of our current NSF-funded research study (NSF#2029209) about the communication needs of children and families during the pandemic, seeking to understand how they are supported in having conversations about the coronavirus and pandemic-related
DATE:
resource research Media and Technology
With the world in the midst of the COVID-19 pandemic, families are seeking trusted and engaging sources of scientific information to help their children understand prevention, transmission, treatment, and many other topics related to COVID-19 in an effort to ease children’s fears. The goal of our NSF-funded RAPID research study is to understand how children’s science podcasts, as well as other educational products, can provide families with information to help ease children’s worries during a pandemic by increasing children’s understanding of pandemic-related science concepts, empowering
DATE:
resource research Media and Technology
With the world in the midst of the COVID-19 pandemic, families are seeking trusted and engaging sources of scientific information to help their children understand prevention, transmission, treatment, and many other topics related to COVID-19 in an effort to ease children’s fears. The goal of our NSF-funded RAPID research study is to understand how children’s science podcasts, as well as other educational products, can provide families with information to help ease children’s worries during a pandemic by increasing children’s understanding of pandemic-related science concepts, empowering
DATE:
resource evaluation Media and Technology
This summative evaluation describes the FOSSIL (Fostering Opportunities for Synergistic STEM with Informal Learners) project activities and outcomes. Over the six-year funding period of this project, we developed a community of practice of more than 10,000 participants (via our web site, social media, and app) who share an interest in fossils and paleontology. This report describes the success and challenges of the FOSSIL project.
DATE:
TEAM MEMBERS: Bruce MacFadden
resource evaluation Media and Technology
Learning to See, Seeing to Learn is a National Science Foundation-funded project to develop www.macroinvertebrates.org, a digital observation tool and set of informational resources that can supplement volunteer biomonitoring trainings and improve aquatic macroinvertebrates identification. Project researchers are interested in how trainers and volunteers use the tool, as well as how training that incorporates the tool impacts volunteers’ confidence in and accuracy around aquatic macroinvertebrates identification. In November 2018, project partner, Stroud Water Research Center, conducted a
DATE:
TEAM MEMBERS: Camellia Sanford-Dolly
resource research Media and Technology
The Brains On! exploratory research study was guided by three overarching research questions: Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts? How are Brains On! listeners using the podcast and engaging with its content? What kinds of impacts does Brains On! have on its audiences? These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the
DATE:
TEAM MEMBERS: Amy Grack Nelson Scott Van Cleave Juan Dominguez Reba Isaak
resource research Media and Technology
The Brains On! exploratory research study was guided by three overarching research questions: Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts? How are Brains On! listeners using the podcast and engaging with its content? What kinds of impacts does Brains On! have on its audiences? These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the
DATE:
TEAM MEMBERS: Amy Grack Nelson Scott Van Cleave Juan Dominguez
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.

The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Diamond Julia McQuillan Patricia Wonch Hill Elizabeth VanWormer
resource project Media and Technology
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The major public policy of social distancing relies, in part, on the cooperation of younger and healthier people who may not experience symptoms and can spread the virus unknowingly to more vulnerable populations. Science journalists, who are on the front lines of covering the pandemic, can play an important role in educating millennial audiences about the science behind the virus, how it is transmitted and effective ways to prevent the virus from spreading. This award will help the STEM field better understand how to engage millennial audiences with effective COVID-19 media content and to urgently capture professional knowledge on crisis reporting. KQED and Texas Tech University are suited to rapidly implement a science media informal science learning project targeting millennials and younger audiences in light of their current NSF-funded "Cracking the Code: Influencing Millennial Science Engagement" collaborative research and evaluation project (DRL 1810990 and 1811091). The project team has built a functional research protocol for its media practitioner and academic researcher collaboration, and will apply these new RAPID funds to complement on-going efforts, mobilize the existing team, research protocol, and research tools to respond to the communication challenge of reaching younger adults posed by COVID-19. Content to be created includes: 1) Radio broadcasts - daily news coverage, live talks; 2) A real-time blog - live Coronavirus updates and 3) Social media content on Facebook, Instagram and Twitter.

The project team will explore the following research questions:


How could COVID-19 coverage be designed to best inform, engage and educate millennials and younger audiences about the science of virus transmission and prevention?
What are some best practices for crisis reporting, as journalists respond to both constantly updated information and changing audience needs, that can be used by media outlets (such as advisors PBS Digital Studios, PBS NewsHour, NOVA, NPR Science, and more)?


The research protocol centers around "media testing cycles," which are time-bounded studies (5 months long) exploring a subset of research questions about the effectiveness of KQED's science content (articles, videos, social media posts and radio reporting) at reaching younger audiences. Steps include identifying problems that are suited for empirical examination; formulating plausible competing hypotheses on the nature of those problems and their potential solutions; and crafting study designs calculated to support valid, realistic inferences on the relative strength of those hypotheses. Data will be gathered from COVID-19 audience "chatter" from Twitter and Facebook through Crimson Hexagon, a social media listening platform. In addition to the social media listening, researchers will conduct a thematic analysis of the questions currently being collected through the audience engagement platform Hearken, where KQED has gathered nearly 2,000 questions to date about the virus and lifestyle changes. This data will also help the project team understand knowledge gaps about prevention and transmission of the virus. These two qualitative studies will be conducted concurrently and reported to KQED journalists quickly to inform reporting.

Texas Tech researchers will create a virus transmission and prevention knowledge assessment. This assessment will be validated using a national online survey. The project will examine knowledge differences based on, for example, generation and gender. TTU will examine relationships between performance on this assessment and two relevant measures: science curiosity and ordinary science intelligence. The national survey will help identify what knowledge gaps are present in which audiences. Using this information, KQED journalists will develop "explainers" and other news content, to meet audience needs and to fill knowledge gaps.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum
resource project Media and Technology
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The goal of this award is to advance understanding of how children's science podcasts can provide families with information to help ease children's anxiety and fears during a pandemic. The project's hypothesis is that through listening to Brains On! coronavirus-related episodes, children will increase their understanding of science concepts related to the pandemic. As they gain this understanding, it is predicted that their overall fear and anxiety about the pandemic will diminish, they will feel empowered to ask pandemic-related questions and will engage in more science- based conversations with their family members. The project will develop three Brains On! podcast episodes focused specifically on the COVID-19 pandemic for kids aged 5 to 12 and their families. The research questions include:


How and to what extent do Brains On!'s coronavirus-based episodes help children and their families understand and talk about science-related pandemic topics? What kind of conversations are sparked by these episodes?
What kinds of questions do children have after listening to the Brains On! coronavirus episodes and what are the reasons for their questions? What can the questions tell us about the impact of listening on kids' science engagement and learning?
What resources do parents need to answer children's questions and help them understand science topics related to the pandemic?



This project is a collaboration between a media producer, Minnesota Public Radio and researchers at The Science Museum of Minnesota. Brains On! already has a large listening audience, with 7 million downloads a year, and more than 200,000 unique listeners a month and these new episodes are likely to increase listenership further. The research findings will be quickly disseminated to a wide range of audiences that can immediately apply the findings to create media and other coronavirus-related educational resources for families.

The PI's prior NSF funded projects have found that previous Brains On! podcasts with a range of STEM content increase the number and sophistication of the science questions children ask and lead to science-based conversations with family members. This project will study the impacts in relation to a singular topic, COVID-19. Three online surveys of Brains On! listeners (families with children ages 5 - 12 years old) will be conducted. The first survey to be conducted as soon as the project begins will focus on parents reflecting on what information is needed at that stage of the pandemic. Two additional listener surveys will occur immediately after new COVID-19 podcast episodes are released. These surveys will ask content-specific questions to understand how well the episode conveys that information to children and their families, what conversations were sparked from the content, and what additional information needs families have. Prior to administering each of the three surveys, video-based think-aloud interviews with 10 families will test and revise survey questions.

Survey participants will be recruited using language in Brains On! episodes, social media, website, and newsletters. A sample size of around 1,000 for each of the surveys is planned (based on a 95% confidence interval and ±3% sampling error). Analyses will include descriptive statistics and thematic coding of open-ended survey questions. Subgroup samples, when large enough will look at differences in responses by demographic variables (e.g. race/ethnicity, household income, highest level of education in the household, an adult in the household with a STEM career, gender of child, geographic location). The researchers and Brains On! staff will work together to identify how the findings can be applied to the development of subsequent coronavirus-related episodes and shared with the ISE field to further support families? education and information needs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -