Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
The project team published a research synopsis article with Futurum Science Careers in Feb 2023 called “How Can Place Attachment Improve Scientific Literacy?”
This project is designed to support collaboration between informal STEM learning (ISL) researchers, designers, and educators with sound researchers and acoustic ecologists to jointly explore the role of auditory experiences—soundscapes—on learning. In informal STEM learning spaces, where conversation advances STEM learning and is a vital part of the experience of exploring STEM phenomena with family and friends, attention to the impacts of soundscapes can have an important bearing on learning. Understanding how soundscapes may facilitate, spark, distract from, or even overwhelm thinking and conversation will provide ISL educators and designers evidence to inform their practice. The project is structured to reflect the complexity of ISL audiences and experiences; thus, partners include the North Park Village Nature Center located in in a diverse immigrant neighborhood in Chicago; Wild Indigo, a Great Lakes Audubon program primarily serving African American visitors in Midwest cities; an after-school/summer camp provider, STEAMing Ahead New Mexico, serving families in the rural southwest corner of New Mexico, and four sites in Ohio, MetroParks, Columbus Zoo and Aquarium, Franklin Park Conservatory and Botanical Gardens, and the Center of Science and Industry.
Investigators will conduct large-scale exploratory research to answer an understudied research question: How do environmental sounds impact STEM learning in informal learning spaces? Researchers and practitioners will characterize and describe the soundscapes throughout the different outdoor and indoor exhibit/learning spaces. Researchers will observe 800 visitors, tracking attraction, attention, dwell time, and shared learning. In addition to observations, researchers will join another 150 visitors for think-aloud interviews, where researchers will walk alongside visitors and capture pertinent notes while visitors describe their experience in real time. Correlational and cluster analyses using machine learning algorithms will be used to identify patterns across different sounds, soundscapes, responses, and reflections of research participants. In particular, the analyses will identify characteristics of sounds that correlate with increased attention and shared learning. Throughout the project, a team of evaluators will monitor progress and support continuous improvement, including guidance for developing culturally responsive research metrics co-defined with project partners. Evaluators will also document the extent to which the project impacts capacity building, and influences planning and design considerations for project partners. This exploratory study is the initial in a larger research agenda, laying the groundwork for future experimental study designs that test causal claims about the relationships between specific soundscapes and visitor learning. Results of this study will be disseminated widely to informal learning researchers and practitioners through workshops, presentations, journal articles, facilitated conversations, and a short film that aligns with the focus and findings of the research.
DATE:
-
TEAM MEMBERS:
Martha MersonJustin MeyerDaniel Shanahan
Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and identify three groups of underserved counties based on the interaction between population density and poverty percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in areas with the fewest sites for informal
Final External Evaluation Report for Informal STEM Learning at Biological Field Stations, an NSF AISL Exploratory Pathways project, which studied the pedagogical and andragogical characteristics of informal educational outreach activities at field stations. This report summarizes the project team’s major research activities and the contextual factors that supported that work.
Appendix includes interview protocol.
Urban environments are remarkable natural laboratories to study ecology and speciation. These learning ecosystems are ecologically diverse and potentially more accessible for urban youth and their families. Unfortunately, disparities in STEM access continue to persist. Transportation, social and financial barriers, and a lack of awareness of STEM opportunities are a few of the inequities that significantly limit participation in STEM programs among urban youth, especially from underrepresented groups. Perceptions of who can meaningfully engage in scientific research remain demographically skewed to affluent, aged, and non-minoritized individuals. In an effort to address these challenges, this pilot study will investigate the feasibility of using remote cameras to survey local, urban wildlife to promote inclusive practices and youth engagement in STEM. A co-created curriculum will be employed, bringing urban ecologists and Detroit youth (6th-8th grade) together to participate in wildlife field experiences to garner and analyze data collected from cameras deployed through the city. It is the unique coupling of the camera surveys with authentic place-based, culturally relevant ecological research that will facilitate the innovative, experiential learning experiences. This pilot study will advance the understanding of the extent to which various facilitation methods and participation in out-of-school time programs like the Wildlife Neighbors program impact youth. From a broader impacts perspective, this work may yield positive environmental literacy outcomes and prove applicable for other urban youth in the country. The research findings would lay the foundation for future research and add novel approaches to the NSF portfolio on urban, out-of-school time environmental education programs for middle school youth using camera surveys to promote inclusivity, engagement in scientific field research, and increase youths' interest in STEM.
Through a strategic partnership between the Applied Wildlife Ecology Lab at the University of Michigan and the Detroit Zoological Society, this pilot will examine the effects of experiential learning through wildlife monitoring in twenty-four Detroit parks on strengthening four aspects of youth's environmental literacy: knowledge of ecology, competencies as researchers, empathy for wildlife, and sense of place. Youth will self-select into one of four facilitation models, each varying in intensity (summer experience, afterschool club) and mode (in-person, remote). Using camera surveys deployed in Detroit parks, youth will be immersed in ecological research, engaging them in the entire scientific process: observation, inquiry, data collection, fieldwork, data analysis and storytelling. Youth pre- and post-surveys, daily reflections on program activities, and parent/guardian questionnaires will assess impacts and experiences of the Wildlife Neighbors facilitation models and program more broadly. The research questions will explore the extent to which participation in Wildlife Neighbors: (a) differs across facilitation intensity and mode, and (b) strengthens environmental literacy among middle school urban youth when engaged in a co-created out-of-school time experiential program using remote cameras to survey local wildlife. Over the two-year pilot duration, approximately 100 youth and their families will participate in the program.
This pilot study is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This Innovations in Development project addresses the need to broaden girls' participation in STEM studies and career pathways. While women make up 47% of the U.S. workforce, they hold only 28.3% of STEM jobs and only 1 in 10 employed engineers and scientists are minority women. Girls of low socioeconomic status start losing interest and confidence in STEM during middle school, and this decline often continues as girls get older. Multiple sociocultural barriers contribute to girl's loss of confidence including gender and ethnic stereotypes; lack of culturally responsive programming; limited exposure to women role models; and few or no hands-on STEM experiences. This project builds upon the success of SciGirls, the PBS television show and national outreach program, which provides professional development on research-based gender equitable and culturally responsive teaching strategies designed to engage girls in STEM. It is a collaboration between Twin Cities Public Television, the Cornell Lab of Ornithology, and the National Park Service. The project's goal is to create media-rich citizen science experiences for girls, particularly girls of color and/or from rural areas, which broaden their STEM participation, build positive STEM identities and increase girls' understanding of scientific concepts, while leveraging citizen science engagement at national parks. Project deliverables include 1) creating five new PBS SciGirls episodes that feature real girls working with women mentors in 16 National Parks, 2) producing five new role model videos of women National Park Service STEM professionals, nationally disseminated on multiple PBS platforms, 3) providing professional development for educators and role models. This project will increase access to STEM education for girls of color and/or from rural areas, inspiring and preparing them for future STEM workforce participation. It will build the capacity of educators and National Park Service women role models to create educational and professional programs that are welcoming to girls of varying racial, ethnic, socioeconomic, and geographic backgrounds. SciGirls' massive reach to diverse audiences via PBS broadcast and multiple PBS digital platforms will amplify public scientific literacy, particularly for 21st- century audiences that connect, learn and live online.
The research study conducted by the Cornell Lab of Ornithology will address these questions: 1) To what extent does the use of culturally responsive and gender equitable multimedia in citizen science programming affect girls' learning outcomes, and contribute to the development of positive STEM identity' 2) how will their experiencing citizen science in the parks influence girls' connection to nature? At the beginning of the project all participating girls (n=160) will complete a survey on their interest in science, efficacy for doing science, and knowledge of citizen science and project-specific subject matter. Researchers will use the suite of DEVISE instruments most of which have been validated for youth to measure these constructs. To measure connection to nature, researchers will use the Connection to Nature Index, a scale developed for children. Interviews with the girls will be used to obtain qualitative data to supplement the survey data. Pre-post data will be analyzed to determine the influence of the culturally responsive media and experiences on girls' STEM identities. Researchers will share findings with the project evaluator to triangulate data between educators' implementation of the strategies and girls' learning outcome providing a more holistic picture of the overall program.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.
This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
Worldwide, four million people participate in geocaching--a game of discovering hidden treasures with GPS-enabled devices (including smart phones). Geocachers span all ages and tend to be interested in technology and the outdoors. To share information about the Montana Climate Assessment (MCA), an NSF-funded scientific report, Montana State University created a custom trackable geocaching coin featuring the MCA Website and logo. We then recruited volunteers to hide one coin in each of Montana’s 56 counties. Volunteer geocachers enthusiastically adopted all 56 counties, wrote blogs and social media posts about the coins, and engaged local Scout troops and schools. Other geocachers then found and circulated the coins while learning about Montana’s climate. One coin has traveled nearly 4,000 miles; several have visited other states and Canada. 95% of the volunteers said the project made them feel more connected to university research, and they told an average of seven other people about the project. Nearly all of the participants were unfamiliar with the Montana Climate Assessment prior to participating. The geocaching educational outreach project included several partnerships, including with Geocaching Headquarters in Seattle (a.k.a. “Groundspeak”); Cache Advance, Inc., an environmentally friendly outdoor gear company; and Gallatin Valley Geocachers. An advisory board of geocachers helped launch the project.
DATE:
TEAM MEMBERS:
Suzi TaylorRay CallawayM.J. NehasilCathy Whitlock