Skip to main content

Community Repository Search Results

resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Thousands of webcams available to the public are operated by STEM organizations, such as zoos, museums, and government agencies. However, as of yet no research has quantified any aspect (cognitive, behavioral, or emotional) of viewer outcomes. Our objective is to build foundational knowledge about basic aspects of STEM webcams in the United States (US) from the perspectives of both practitioners and viewers.
DATE:
TEAM MEMBERS: Sarah Schulwitz Vanessa Fry Sarah Hagenah
resource project Media and Technology
This project investigates long-term human-robot interaction outside of controlled laboratory settings to better understand how the introduction of robots and the development of socially-aware behaviors work to transform the spaces of everyday life, including how spaces are planned and managed, used, and experienced. Focusing on tour-guiding robots in two museums, the research will produce nuanced insights into the challenges and opportunities that arise as social robots are integrated into new spaces to better inform future design, planning, and decision-making. It brings together researchers from human geography, robotics, and art to think beyond disciplinary boundaries about the possible futures of human-robot co-existence, sociality, and collaboration. Broader impacts of the project will include increased accessibility and engagement at two partner museums, interdisciplinary research opportunities for both undergraduate and graduate students, a short video series about the current state of robotic technology to be offered as a free educational resource, and public art exhibitions reflecting on human-robot interactions. This project will be of interest to scholars of Science and Technology Studies, Human Robotics Interaction (HRI), and human geography as well as museum administrators, educators and the general public.

This interdisciplinary project brings together Science and Technology Studies, Human Robotics Interaction (HRI), and human geography to explore the production of social space through emerging forms of HRI. The project broadly asks: How does the deployment of social robots influence the production of social space—including the functions, meanings, practices, and experiences of particular spaces? The project is based on long-term ethnographic observation of the development and deployment of tour-guiding robots in an art museum and an earth science museum. A social roboticist will develop a socially-aware navigation system to add nuance to the robots’ socio-spatial behavior. A digital artist will produce digital representations of the interactions that take place in the museum, using the robot’s own sensor data and other forms of motion capture. A human geographer will conduct interviews with museum visitors and staff as well as ethnographic observation of the tour-guiding robots and of the roboticists as they develop the navigation system. They will produce an ethnographic analysis of the robots’ roles in the organization of the museums, everyday practices of museum staff and visitors, and the differential experiences of the museum space. The intellectual merits of the project consist of contributions at the intersections of STS, robotics, and human geography examining the value of ethnographic research for HRI, the development of socially-aware navigation systems, the value of a socio-spatial analytic for understanding emerging forms of robotics, and the role of robots within evolving digital geographies.

This project is jointly funded by the Science and Technology Studies program in SBE and Advancing Informal STEM Learning (AISL) Program in EHR.
DATE: -
TEAM MEMBERS: Casey Lynch David Feil-Seifer
resource project Media and Technology
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Math is everywhere in the world, but youth may see math as disconnected from their everyday experiences and wonder how math is relevant to their lives. There is evidence that informal math done by children is highly effective, involving efficiency, flexibility, and socializing. Yet, more is needed to understand how educators can support math engagement outside of school, and the role these out-of-school experiences can play relative to the classroom and lifelong STEM learning. This Innovations and Development Project seeks to conduct research on a location-based mobile app for informal mathematics learning. This research takes place at 9 informal learning sites and involves iteratively designing an app in which learners can view and contribute to an interactive map of math walk “stops” at these sites. Learners will be able to select locations and watch short videos or view pictures with text that describe how mathematical principles are present in their surroundings. For example, learners could use the app to discover how a painting by a local Latino artist uses ratio and scale, or how a ramp in downtown was designed with a specific slope to accommodate wheelchairs. Research studies will examine the affordances of augmented reality (AR) overlays where learners can hold up the camera of their mobile device, and see mathematical representations (e.g., lines, squares) layered over real-world objects in their camera feed. Research studies will also examine the impact of having learners create their own math walk stops at local informal learning sites, uploading pictures, descriptions, and linking audio they narrate, where they make observations about how math appears in their surroundings and pose interesting questions about STEM ideas and connections they wonder about.

This project draws on research on informal math learning, problem-posing, and culturally-sustaining pedagogies to conduct cycles of participatory design-based research on technology-supported math walks. The research questions are: How does posing mathematical scenarios in community-imbedded math walks impact learners’ attitudes about mathematics? How can experiencing AR overlays on real world objects highlight mathematical principles and allow learners to see math in the world around them? How can learners and informal educators be engaged as disseminators of content they create and as reviewers of mathematical content created by others? To answer these questions, five studies will be conducted where learners create math walk stops: without technology (Study 1), with a prototype version of the app (Study 2), and with or without AR overlays (Study 3). Studies will also compare children's experiences receiving math walk stops vs. creating their own stops (Study 4) and explore learners reviewing math walk stops made by their peers (Study 5). Using a community ethnography approach with qualitative and quantitative process data of how youth engage with the app and with each other, the project will determine how the development of math interest can be facilitated, how learner-driven problem generation can be scaffolded, and under what circumstances app-based math walks are most effective. The results will contribute to research on the development of interest, problem-posing, informal mathematics learning, and digital supports for STEM learning such as AR. This project will promote innovation and have strategic impact through a digital infrastructure that could be scaled up to support STEM walks anywhere in the world, while also building a local STEM learning ecosystem among informal learning sites focused on informal mathematics. This project is a partnership between Southern Methodist University, a nonprofit, talkSTEM that facilitates the creation of community math walks, and 9 informal learning providers. The project will directly serve approximately 500 grades 4-8 learners and 30-60 informal educators. The project will build capacity at 9 informal learning sites, which serve hundreds of thousands of students per year in their programming.

This Innovations in Development project is supported by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Candace Walkington Anthony Petrosino Cathy Ringstaff koshi dhingra Elizabeth Stringer
resource evaluation Media and Technology
Char Associates conducted an evaluation of the four-year, NSF-funded project, Interpreters and Scientists Working on Our Parks (iSWOOP). The project brought interpreters and scientists together in multi-day professional development sessions at five national parks with the purpose of showcasing scientific research that usually goes unseen and unappreciated by park visitors. iSWOOP coordinated the development and delivery of digital libraries including animations, still photos, thermal and high-speed videos, and maps to give visual support to explanations of particular scientific studies. In
DATE:
TEAM MEMBERS: Cynthia Char
resource project Media and Technology
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.

Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
DATE: -
resource evaluation Media and Technology
Since its completion in 1937, the Golden Gate Bridge has become one of the world’s most recognized landmarks as both an iconic public works accomplishment and a popular tourist destination. In 2008, the National Science Foundation (NSF) awarded a $3 million grant to the Golden Gate Bridge Highway & Transportation District to leverage this status in developing informal education resources to interpret the science, engineering and history of the bridge. Through this initiative the Golden Gate Bridge would become a model for other public works venues for providing informal science education and
DATE:
TEAM MEMBERS: David Heil
resource evaluation Media and Technology
While some public works are monumental civil engineering structures like the Eiffel Tower or the Sydney Harbour Bridge, most are commonplace, even invisible, and they are taken for granted. The reason for existence of public works is to provide basic services, but both large and small infrastructure facilities also present opportunities to engage the public in understanding fundamental concepts of Science, Technology, Engineering, and Mathematics (STEM). We review here lessons learned in the National Science Foundation-funded Golden Gate Bridge Outdoor Exhibition project. Using the title of
DATE:
TEAM MEMBERS: Michelle Phillips David Heil Robert Reitherman
resource project Media and Technology
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
DATE: -
TEAM MEMBERS: Mark Patterson
resource project Media and Technology
This project will bring STEM content knowledge to visitors to Cuyahoga Valley National Park via mobile device applications. Visitors will be able to use their mobile phones to access details about Park features (such as where they are in the park, what they are looking at, and where are related features), supporting just-in-time STEM learning. Cuyahoga Valley National Park receives around 2.5 million visitors every year and experiences multitudes of inquiries. Until this project, visitors were subjected to less than optimum signage for information and background about a given feature that may or may not be of interest to them. In this project, knowledge building information will be selected by the visitors and delivered to them with convenience and speed. The data base supporting this effort will provide the visitor with identification and the history of park features as well as more in depth knowledge building information while they are in the park and after the leave, providing a more holistic experience than is currently available. The investigators will build the system in parts, testing the feasibility at each stage and evaluating affective and cognitive outcomes of each portion. Research questions that will be addressed in the course of this project include: (1) What outcomes associated with use of this GPS-base system could inform future development and implementation? and (2) What contributions do these GPS-based mobile learning applications have on informal science learning as understood within the Six Strands of Informal Science Learning? It is expected knowledge generated in this project will stimulate additional programing for increasing efficacy and use in other widely ranging venues. If successful, it is easy to imagine how this STEM knowledge-building application could be extended for use in other venues across the country.
DATE: -
TEAM MEMBERS: Richard Ferdig Ruoming Jin Patrick Lorch Annette Kratcoski
resource research Media and Technology
This white paper is the product of the CAISE Public Participation in Scientific Research Inquiry Group. It describes how public participation in scientific research (PPSR) through informal science education can provide opportunities to increase public science literacy.
DATE:
TEAM MEMBERS: Center for Advancement of Informal Science Education (CAISE) Rick Bonney Heidi Ballard Rebecca Jordan Ellen McCallie Tina Phillips Jennifer Shirk Candie Wilderman
resource research Media and Technology
Inclusion, Disabilities, and Informal Science Learning, a report by the CAISE Access Inquiry Group, sets forth a framework for changing this inequity. This white paper offers a theoretical framework for thinking about inclusion of people with disabilities in informal science education (ISE), then reviews current practice in museums (broadly defined), in media and technology, and in youth and community programs. While "investigations located a number of projects, initiatives, and organizations that have sought greater inclusion of people with disabilities in ISE," the report concludes, "these
DATE:
TEAM MEMBERS: CAISE Access Inquiry Group Christine Reich Jeremy Price Ellen Rubin Mary Ann Steiner
resource project Media and Technology
The Department of Geological Sciences at Rutgers, in collaboration with the Liberty Science Center, the New York State Museum, Palisades Interstate Park Commission, Appalachian Trail Conference, and ABS-Capital Cities, Inc., has a planning grant to develop a universal model that will encourage science education in conjunction with outdoor recreational activities in wilderness parks near urban centers. The initial effort will focus on the Harriman and Bear Mountain State Parks and the Sterling Forest lands, all near New York City. Current plans for the full project include development of: 1) an illustrated guidebook describing the features chosen as "exhibits" at the sites, 2) a map showing locations of the "exhibits", 3) plaques marking the features of the exhibits, 4) proposals for new trails to access outstanding botanical and geological features, 5) a web site with virtual reality filed trips of the sites chosen, 6) museum displays and media programs at Liberty Science Center, the New York State Museum, and other sites, 7) regular field trips from Liberty Science Center, New York State Museum, and Bear Mountain Trailside Museum, 8) workshops for high school teachers, and 9) special project to get more public use of the park resources. During the planning stage the project will gather data on public interest, determine the most effective means of dissemination, identify and contact other organizations and scientist that could contribute to the full project, and develop a coordination plan and schedule for this complex project. Small examples and/or written descriptions of the web-site, the guidebook stops, museum displays, and field trips will also be produced in the planning phase.
DATE: -
TEAM MEMBERS: Alexander Gates