This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
This project will scale up fully virtual or face-to-face STEM professional development to afterschool educators in both urban and rural settings. Given that many afterschool educators have little or no background in STEM education, there is demand for professional development that is effective, inexpensive, and accessible. This project will build national capacity in STEM education by developing the STEM skills of over 1,500 educators across multiple states and will ultimately impact over 31,000 under-represented youth in these areas. The project will also deliver robust materials through a free open-source mechanism, for use by educators anywhere and anytime. The project will broaden participation in STEM by engaging community educators in the rural parts of the nation, a critically under-represented group in STEM. It will also reach educators from low-income urban communities across three states and seven cities, targeted through strategic networks and partnerships, including organizations such as the YMCA, 4-H, and the National Afterschool Association.
This collaborative project is scaling the ACRES model (Afterschool Coaching for Reflective Educators in STEM). The model humanizes the virtual experience, making it social and engaging, and allows educators to learn, share, and practice essential STEM facilitation skills with a focus on making STEM relevant and introducing STEM careers to youth. In addition to enhancing the professional STEM skills of rural and urban educators, the project will create a national cohort of coaches with deep expertise in (i) converting in-person activities for youth into a highly engaging, choice-rich online format, (ii) engaging isolated informal educators in supportive professional learning communities, and (iii) coaching foundational research-based STEM facilitation skills that ensure these activities are pedagogically sound. A key part of this broad implementation project involves studying how to integrate an effective professional development program into afterschool organizations, including the ways afterschool programs adapt the materials to be culturally responsive to their local communities. The researchers will also study factors contributing to the longer-term sustainability of the program. The research will use surveys, interviews, direct observations, and case studies of participants to provide the field with valuable insights into scaling a program in the afterschool world.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for extending access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Research suggests that when both science, technology, engineering, and mathematics (STEM) education and social-emotional development (SED) are supported in afterschool, summer, and other informal settings, young people can better develop skills for the future such as leadership, decision-making, and relationship-building so they could have successful careers/participation in STEM. However, researchers and practitioners working in the out-of-school time (OST) sector often do so without connections across these fields. The appeal for more integration of STEM and SED in OST program delivery and data collection has remained abstract and aspirational. This Literature Review and Synthesis project is the next step needed to move the OST field toward the intentional, explicit, and evidence-based integration of STEM and SED in research and practice. The project will create shared understanding necessary to improve program content, staff training, and evaluation. This synthesis will support future research on unified STEM+SED that can lead to more effective, equitable, and developmentally appropriate programming. Improved programming will contribute to talent development, address STEM workforce needs, and promote socioeconomic mobility to benefit children, youth, educators, and society. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
This project will systematically examine what domains and skills at the interface of STEM+SED are most researched among K-12 youth in informal STEM learning environments, compared to formal STEM educational environments. The team will further explore how gender, race, and other intersectional forms of equity can be added to the STEM+SED equation. The project team will search and appraise empirical and gray literature (2001-2020) to identify the most commonly researched domains and skills at the interface of STEM+SED in informal environments serving K-12 youth. The review and synthesis process will include four steps: search, appraisal, synthesis, and analysis. The search will begin with STEM+SED skills in four foundational domains (agency, belonging, engagement, and reflection) identified previously with experts from the fields of STEM and SED. The search will include all existing, eligible references from formal K-12 settings to contrast commonly studied domains and skills (e.g., perseverance, self-regulation, teamwork, complex problem-solving, self-awareness) in formal versus informal learning environments. The study approach will then compare these domains and skills by the demographics variables noted above. Following the creation of a strong catalog of evidence, information will be synthesized using three “pillars” for building coherence in STEM+SED integration: phenomenon (the knowing), implementation (the doing) and assessment (the result). These pillars will be used to organize and critically analyze the literature. Building conceptual coherence through a systematic review and synthesis of literature from the fields of STEM and SED will lead to greater understanding of STEM+SED in OST practice, highlight the most important content and skills to learn in informal environments, and identify when and how youth should learn specific content and skills at the interface of STEM+SED. Applying coherence to the integration of STEM+SED ensures that the principles and practices are layered carefully, in ways that avoid superficial checklists or duplication of effort and build meaningfully upon young people’s knowledge and skills. The long-term goal is to broker connections and alignment of STEM+SED across schools and OST programs. Recommendations and a roadmap to guide equitable, effective STEM+SED research, practice, and policy will result from this research.
"Making and Tinkering" links science, technology, engineering and mathematics learning (STEM) to the do-it-yourself "maker" movement, where people of all ages "create and share things in both the digital and physical world" (Resnick & Rosenbaum, 2013). This paper examines designing what Resnick and Rosenbaum (2013) call "contexts for tinkerability" within the social design experiment of El Pueblo Mágico (EPM) -- a design approach organized around a cultural historical view of learning and development. We argue that this theoretical perspective reorganizes normative approaches to STEM education
DATE:
TEAM MEMBERS:
Lisa SchwartzDaniela DigiacomoKris Gutierrez
Although virtual conferences have become commonplace in the age of COVID-19, this format poses both challenges and opportunities for organizers to design, implement, and engage participants in productive and connected ways. We created this brief to share an example of the process and lessons learned as we designed and hosted a virtual NSF-funded conference called: Mapping Connections Between STEM and Social-Emotional Development (SED) in Out-of-School Time (OST) Programs. This conference focused on identifying outcomes at the interface of STEM and SED in OST research and practice (e.g
This Masters project consists of two elements: 1) an integrated after-school program to improve student English language reading and academic outcomes for third graders' vocabulary development by incorporating music, artistic creativity and linguistics; 2) a pilot sample curriculum that demonstrates the approach for building student comprehension through musical theater and Science, Technology, Engineering, and Mathematics (STEM) content experiences. Called "Water Buddy", this is an after-school program uses singing, dancing, writing, and play to build reading and vocabulary skills. The goal
But many young people face signifcant economic, cultural, historical, and/or social obstacles that distance them from STEM as a meaningful or viable option— these range from under-resourced schools, race- and gender-based discrimination, to the dominant cultural norms of STEM professions or the historical uses of STEM to oppress or disadvantage socio-economically marginalized communities (Philip and Azevedo 2017). As a result, participation in STEM-organized hobby groups, academic programs, and professions remains low among many racial, ethnic, and gender groups (Dawson 2017). One solution to
This paper examines the differences and challenges encountered when trying to create informal blended (virtual and hands-on) engineering design STEM activities. It contrasts the creation of STEM activities for formal and informal learning environments, stressing that the differences extend far beyond the length of the activity or depth of any learning goals. The discussion begins with an examination of differences between the two learning environments that need to be taken into consideration. These differences include the physical environments, organizational structures, and the goals or
This paper discusses findings from the use of the Wise Guys and Gals (WGG) Observation of WGG Youth Protocol in a blended learning environment. The protocol was used to assess youth engagement when completing blended engineering design challenges at two Boys and Girls Clubs. WGG is a project funded through a grant from the National Science Foundation and which brings blended learning design challenges to middle school aged learners in informal STEM (science, technology, engineering, and mathematics) settings. This paper explores the feasibility of using the observation protocol to collect data
Background. STEM identity has emerged as an important research topic and a predictor of how youth engage with STEM inside and outside of school. Although there is a growing body of literature in this area, less work has been done specific to engineering, especially in out-of-school learning contexts.
Methods. To address this need, we conducted a qualitative investigation of five adolescent youth participating in a four-month afterschool engineering program. The study focused on how participants negotiated engineering-related identities through ongoing interactions with activities, peers
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks