This CAREER proposal focuses on the development of teachers' identities, which are operationalized as beliefs and practices, behaviors, and pedagogical knowledge. The PI uses a qualitative approach, occurring over two phases, to investigate the impact of formal-informal collaborations on identity development over time. The study is grounded in an ecological theoretical approach that incorporates a view of informal learning settings as learner-driven and unique in providing opportunities for interaction with objects during meaning-making experiences among groups of learners. The longitudinal research design includes collection of an array of data, including observations of teaching and learning activities, interviews, survey responses, and archival documents such as student work and videos of classroom experiences. The PI uses a narrative analysis and a grounded theoretical approach to generate themes about beliefs and practices around behaviors and pedagogical knowledge informed by informal science education experiences.
Research findings and related educational activities inform the field's understanding of best practices of integrating informal science activities into science teacher education, including determining appropriate kinds of support for STEM teachers who learn to teach in informal learning environments (ILE). The PI is integrating research findings in the revision of existing courses and the development of new courses and experiences for both new and experienced teachers. The project addresses the need for empirical evidence of impacts of ILE experiences on professional development, and will build capacity of informal science institution and university professionals to provide effective teacher education experiences and new teacher support.
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).
The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).
This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Playscapes are intentionally designed nature-focused play environments for young children where children learn through exploration, discovery, play and adult supported provocations. The primary objective of this ongoing research-in-service to practice project is to engage in a collaborative mixed methods study to investigate aspects of science, technology, engineering, and math (STEM) learning with regard to playscape design, teacher efficacy, children’s learning, and dosage effects. It builds upon a previous NSF Pathways study.
The goal of this poster is to showcase the usable research and
DATE:
TEAM MEMBERS:
Victoria CarrRhonda BrownHeidi KloosLeslie KochanowskiSue SchlembachCatherine Maltbie
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.
Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“Not a place for me” is often one of the main reasons people choose not to visit art museums.
Such perceptions of art museums call for institutions to create wider and more diverse entry points for visitors. At the Art Institute of Chicago—envisioned by our first president as a “museum of living thought”—we seek to continually expand art historical narratives by bringing together a plurality of perspectives and voices to processes of research, scientific and creative inquiry, and to increasingly varied modes of public engagement with art. To achieve these goals we developed a multifaceted
DATE:
TEAM MEMBERS:
Francesca Casadio
resourceprojectProfessional Development, Conferences, and Networks
In this virtual conference, The PEAR Institute convened over 40 practitioners and researchers to explore the power of an integrated vision of STEM and social-emotional development (SED). This conference aimed to 1) create a collaboration of out-of-school time (OST) leaders, practitioners, and researchers to map the overlays of STEM and SED; 2) identify best practices for integrated STEM-SED programming; 3) explore common existing and potential measures; and 4) identify how data is measured, communicated, and used for skills that are important to both STEM and SED. Through this collaboration, we aimed to initiate the conversations, establish partnerships, and build the capacity for assessment of STEM and SED in informal STEM learning programs.
Rather than seeking consensus, this conference sought to unearth questions and generate new ideas to lay a foundation for future research and practice, a way to inform the field about high-quality research and practice to promote cross-disciplinary collaboration and synergy between STEM and SED.
Conference deliverables include a conference report, an informal key findings webinar, and conference website (https://www.thepearinstitute.org/stem-sed-conference-2020). The website includes links to a participant directory, conference at-a-glance overview, agendas, readings, and additional resources identified during the conference.
This poster was presented at the 2019 Association of Science-Technology Centers (ASTC) Annual Conference. It describes the Move2Learn project, which studies embodied interactions during science learning in order to articulate design principles about how museum exhibits can most effectively encourage cognitive and physical engagement with science.
Providing an original framework for the study of makerspaces in a literacy context, this book bridges the scholarship of literacy studies and STEM and offers a window into the practices that makers learn and interact with. Tucker-Raymond and Gravel define and illustrate five key STEM literacies—identifying, organizing, and integrating information; creating and traversing representations; communicating with others for help and feedback during making; documenting processes; and communicating finished products—and demonstrate how these literacies intersect with making communities.
The Brains On! exploratory research study was guided by three overarching research questions:
Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts?
How are Brains On! listeners using the podcast and engaging with its content?
What kinds of impacts does Brains On! have on its audiences?
These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the
The Brains On! exploratory research study was guided by three overarching research questions:
Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts?
How are Brains On! listeners using the podcast and engaging with its content?
What kinds of impacts does Brains On! have on its audiences?
These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the
This RAPID award is made by the AISL program in the Division of Research on Learning in the Directorate for Education and Human Resources, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. This project addresses two critical aspects of the impact on COVID-19 on families: (a) the large-scale shift to at-home learning based on nationwide school closures and (b) the critical need for families to understand the basic science of virus transmission and prevention. To address these needs, the project team will develop a series of STEM activities for families with children in grades K-6 that make use of items readily available in most households. The activities help children and their families learn about viruses, virus transmission, and virus prevention while also developing other STEM-skills, particularly related to engineering design. Importantly, the project team also considers the emotional well-being of children and families during the disruption of the COVID-19 pandemic. Led by researchers from Indiana University and Binghamton University, and experts in educational resource development from Science Friday (a non-profit organization dedicated to increasing the public's access to science and scientific information through podcasts, digital videos, original web articles, and educational resources for teachers and informal educators) the project is further supported by partnerships with the New York Hall of Science, Amazeum (AR), the Gulf of Maine Research Institute (ME), The Tech Museum of Innovation (CA), the Indiana State Museum, and Kopernik Observatory Science Center (NY). The activities will be shared with families through live-streamed web sessions that introduce the activity, give tips to adults for facilitation, share a bit on related STEM careers and engage the audience in dialog about the activity and their current experiences. Versions of the sessions that are recorded will be edited and include closed-captioning and subtitles in multiple languages before being posted on platforms such as YouTube.
This project uses a design-based research approach to investigate strategies for enabling families to actively engage with STEM while home and away from their traditional institutions during a period of crisis. The research components focus on:
Engagement: How do families engage in the activity tasks, in terms of processes, practices, and use of resources? Who participated, why did they choose to participate and how did they engage (including modification of activities)? What barriers prevented interested families from completing activities?
Impact: How did the activities change participants? feelings of: a) efficacy around STEM and b) connectedness/ isolation, during extended school closures?
The Activities: Which activities had the greatest uptake? How many activity ideas were submitted by those outside of the team? What was the age/content focus of each of these activities?
The researchers will analyze social media data (including data on resource downloads and use of tracked links, YouTube and Facebook views, comment threads during livestreams and Likes/Shares/Follows across social media sites) to refine and improve the activities and programming as well as learn about the ways families are engaging in the activities. The researchers will solicit survey responses from website visitors to gather more information on participants, why they participated, how they engaged and how the activities impacted participants? efficacy around STEM and their feelings of connectedness or isolation. The researchers will also ask participants to submit images, videos and text that describes what they are making and their process along the way. Analysis of this data would lead to insights on how children and families use STEM language and practices; how children and families ask questions and use COVID-19-related and other information as part of their design work; and how ideas are formed, shaped and refined as families engage in design and making. While the project focuses on a unique opportunity to collect data on family STEM engagement as families respond to disruptions from the COVID-19 pandemic, this project and its findings will provide a knowledge base that can be utilized to inform future responses to national emergencies, other work aimed at promoting family learning at home, and approaches to supporting children in open-ended problem solving.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Scientists are increasingly motivated to engage the public, particularly those who do not or cannot access traditional science education opportunities. Communication researchers have identified shortcomings of the deficit model approach, which assumes that skepticism toward science is based on a lack of information or scientific literacy, and encourage scientists to facilitate open-minded exchange with the public. We describe an ambassador approach, to develop a scientist's impact identity, which integrates his or her research, personal interests and experiences to achieve societal impacts