The Natural History Museum’s contemporary arts programme is described and discussed, in particular the developments since 2006. The various models of engaging with artists and the rationale behind the resulting exhibitions and displays are explained in more detail. Artists who have created new works enabled through the programme include Mark Dion, choreographer Siobhan Davies, Tania Kovats, Tessa Farmer, Dan Harvey and Heather Ackroyd.
In present times it would not be appropriate to say art made a “debut” in science centres, as it has been a feature since the beginning of their history, and it appeared precisely in the ‘parent’ science centre, the Exploratorium. However, now it is time to check the progress. There is unrest for this issue, as in history-making times, and it is worthwhile to follow the new developments and hear the words of the coordinators of the artistic activities in science centres and, more in general, in science museums, and also of the artists involved in the process. The goal is to promote a debate on
Standards and Good Practice guidelines provide explicit criteria for maintaining quality and integrity in science. But research practices are now openly questioned. I defend the idea that the tension between norms and practices in scientific writing must be addressed primarily by the scientific community if quality of the sources in the process of science communication is to be guaranteed. This paper provides evidence that scientific writing and researchers’writing practices do not reflect expected quality criteria. Evidence is based on four complementary analyses of: (i) communication manuals
DATE:
TEAM MEMBERS:
Marie-Claude Roland
resourceresearchProfessional Development and Workshops
Effective training in key communications skills is critical for successful public engagement. However, what are the secrets to designing and delivering an effectual training course? This paper outlines key findings from a research study into communication training programmes for public engagement with STEM (science, technology, engineering and mathematics). The research focused on training in direct communication methods, (as separate from media training) and encompassed both trainers and trainees, the latter group spanning across both scientists and explainers. The findings indicated that
Brazilian research has grown intensely in all areas of microbiology, with the increase in the amount of governmental resources for the sector and the strengthening of a greater number of research groups. However, very few academic studies deal with research about teaching and science communication in microbiology. There is no in-depth study of how this topic is currently being divulgated in communication journals, didactic books and the Internet, or about the interest and the difficulties faced by researchers in communicating microbiology to the general public. This paper investigates academic
DATE:
TEAM MEMBERS:
Daniela Franco Carvalho JacobucciGiuliano Buza Jacobucci
Assessment of trends in the state of the environment constitutes one important aspect of efforts to achieve environmental sustainability. Assessments are often undertaken via indicators which measure progress towards environmental objectives and interim targets. This paper starts from the assumption that different types of environmental indicators have different implications for the public communication and the societal dialogue about the state of the environment and the measures needed to increase ecological sustainability. The paper concludes that it is important to evaluate environmental
For decades, K–12 science education researchers have echoed the need for inquiry-based teaching approaches to connect students to real scientists and science environments (AAAS 1989; NRC 1996, 2007). The Next Generation Science Standards (NGSS) amplify these needs by stressing the importance of student-developed conceptual models to explain real-world phenomena and coherent integration of authentic science practices, concepts, and core ideas across grade levels (NRC 2012; NGSS Lead States 2013).
My dream—many would call it a fantasy—is that someday, science will be as pervasive in society as sports. We already have professional science, but imagine the day that we have extensive programs that feature intramural science, after-school science, and that pick-up science activity at the local park. Passionate amateur scientists will exist in abundance: more amateur geologist rock collectors, more amateur paleontologist fossil collectors, more amateur astronomers who write research papers with professional astrophysicists, and more citizen science projects that provide critical data to
The connections among neuroscience, educational research, and teaching practice have historically been tenuous (Cameron and Chudler 2003; Devonshire and Dommett 2010). This is particularly true in public schools, where so many issues are competing for attention—state testing, school politics, financial constraints, lack of time, and demands from parents and the surrounding community. Teachers and administrators often struggle to make use of advances in educational research to impact teaching and learning (Hardiman and Denckla 2009; Devonshire and Dommett 2010). At the Franklin Institute, we
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?
The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.
The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
Imagine two seventh-grade students from communities of color and low socioeconomic backgrounds, of whom at least one is an English-language learner1 (ELL). Both are likely disenfranchised from avenues to success and the ability to see themselves as capable of great things. These students attend school in the largest school districts in Colorado. As part of their seventh-grade science class, they participate in a program called Urban Advantage Metro Denver (UA Denver), which provides them the opportunity to work on a self-selected science project. Their projects are inspired by field trips to
Over the past ten years, investments in infrastructure for informal STEM education and science communication have resulted in significant growth in the number and variety of resources and depth of expertise available to members of the STEM research community wishing to develop outreach, engagement and broader impacts activities. This report/white paper recounts some of the developments that led to the existing synergy between Informal STEM Education (ISE), science communication, and STEM research, provides examples of infrastructure and resources that support this work, and identifies areas of