This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.
The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
In this literature review, we seek to understand in what ways aspects of computer science education and making and makerspaces may support the ambitious vision for science education put forth in A Framework for K-12 Science as carried forward in the Next Generation Science Standards. Specifically, we examine how computer science and making and makerspace approaches may inform a project-based learning approach for supporting three-dimensional science learning at the elementary level. We reviewed the methods and findings of both recently published articles by influential scholars in computer
DATE:
TEAM MEMBERS:
Samuel SeveranceSusan CodereEmily MillerDeborah Peek-BrownJoseph Krajcik
As the maker movement is increasingly adopted into K-12 schools, students are developing new competences in exploration and fabrication technologies. This study assesses learning with these technologies in K-12 makerspaces and FabLabs.
Our study describes the iterative process of developing an assessment instrument for this new technological literacy, the Exploration and Fabrication Technologies Instrument, and presents findings from implementations at five schools in three countries. Our index is generalizable and psychometrically sound, and permits comparison between student confidence
DATE:
TEAM MEMBERS:
Paulo BliksteinZaza KabayadondoAndrew P. MartinDeborah A. Fields
This document contains the appendices and literature review from the report "Art+Science: Broadening Youth Participation in STEM Learning." It includes assessment tools used during the project.
Art and science represent two powerful human ways of investigating and understanding the natural and social world. Both are creative processes involving acts of observation, interpretation, meaning-making, and the communication of new insights. While standards of evidence may vary between the two fields, there are also many common practices. Many artists, for example, employ a range of computational, digital and engineering practices. Many scientists are guided in part by aesthetic considerations in the formulation of questions, theories, and models. In this report we share the results of a
Afterschool continues to be promoted as a complementary setting to school for strengthening science, technology, engineering, and math (STEM) education (for example, Krishnamurthi, Bevan, Rinehart, & Coulon, 2013). This is a reasonable idea: 10.2 million children and youth in the U.S. participate in structured afterschool programs (Afterschool Alliance, 2014), and the flexibility of afterschool settings allows for innovative approaches to STEM exploration and engagement.
Multimodal technologies are creating new experiential opportunities for exploring, tinkering, learning and interacting in the virtual world. Once combined with sensorial objects and open-ended activities in the physical world, they introduce a new genre of interactive environments called ThinkeringSpace. ThinkeringSpace is a hybrid system - made of networked and remotely accessible physical environments - that seeks to bring school-age children together to collaborate face-to-face and tinker with things, both physical and virtual, reflect upon what they do and discover, and elaborate their
DATE:
TEAM MEMBERS:
Heloisa MouraDale FahnstromGreg PrygrockiT.J. McLeish
In the article, the author discusses technological developments in the education sector in the U.S. as of October 2013. He cites the introduction of the Next Generation Science Standards (NGSS) in early 2013 that is focused on science and engineering in the K-12 curriculum. The NGSS' four disciplinary core concepts include Earth and Space Sciences, Physical Sciences, and Engineering and Technology. He presents several NGSS-friendly software like Celestia and NetLogo, as well as hardware such as the Arduino open-source programmable controller.
Conventional wisdom about young people's use of digital technology often equates generational identity with technology identity: today's teens seem constantly plugged in to video games, social networks sites, and text messaging. Yet there is little actual research that investigates the intricate dynamics of youth's social and recreational use of digital media. This book fills that gap, reporting on an ambitious three-year ethnographic investigation into how young people are living and learning with new media in varied settings—at home, in after school programs, and in online spaces. By
DATE:
TEAM MEMBERS:
University of California, IrvineMizuko Ito
In this paper, commissioned as part of a consensus study on successful out-of-school STEM learning, we draw on the research literature to consider (1) what is known about the impact of tinkering and making experiences on school-aged children’s learning (interest in, engagement with and understanding of STEM in particular); (2) the emerging design principles and pedagogies that characterize tinkering and making programs; and (3) the specific tensions and possibilities within this movement for equity-oriented teaching and learning.
The focus of this paper is to turn our attention to the arts as an understudied area within the computer-supported collaborative learning community and examine how studying the learning of arts and programming can open new avenues of research. We document, describe, and analyze urban youths’ media arts practices within the context of the design studio, particularly by focusing on how collaboration, computation, and creativity play out within this context. We utilize a mixed methods design that draws upon three approaches: (1) participant observations; (2) media arts object analyses; and (3)