The Young Developers program is an after school program conceptualised and run by The P-STEM Foundation. It introduces computer programming and design concepts to high school age students from South African historically disadvantaged communities, where the majority of students have had little or no interaction with computers. Young Developers uses Self Organised Learning Methodology and involves introducing a series of increasingly complex challenges / questions that the participants have to collaboratively solve. The first module is run in Scratch with the final objective being the creation of a racing car game. The second module is run in Python using Turtle graphics with an objective of creating an animation. This program runs as pods in each of the communities that the P-STEM foundation works in. Each pod has up to 30 teens from the age of 10 to 18. Each pod is peer led and peer driven, and the pace of learning is determined by the participants. In 2015, we would also like to introduce national competitions which pods participate in against other pods.
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
Internet Community of Design Engineers (iCODE) program, which took an innovative approach to structuring self-directed learning – using a collaborative on-line environment to facilitate hands-on activities, was a three year program led by the University of Massachusetts Lowell and Machine Science Inc., Cambridge. The overall objective of this program, which involved after-school and summer sessions and was funded by NSF’s Innovative Technology Experiences for Students and Teachers (ITEST) Program, was to increase the likelihood that participating middle school and high school students will
DATE:
TEAM MEMBERS:
Rucha LondheColleen ManningRachel SchechterLaura HousemanIrene Goodman
This article describes an educator's experience in engaging reluctant male students in writing by leading an afterschool writing program. Write After School offers choice within structure and encourages interaction in ways designed to engage reluctant writers, allowing them to choose their own topics, receive feedback, and talk about their work.
This article describes discussions about the relationship between afterschool programs and the Common Core Standards at a networking meeting sponsored by the Robert Bowne Foundation for out-of-school time (OST) providers in New York City in the fall of 2013. The meeting was entitled "Introducing the Common Core Learning Standards: What Are They? What Do We Need to Know?"
DATE:
TEAM MEMBERS:
Suzanne MartenSara HillAnne Lawrence
One in three children in the US is overweight or obese. One in five lives in food-insecure households that struggle to put food on the table. Both problems are linked to poor academic performance, behavior problems, and high rates of school absenteeism. To address these issues, the Alliance for a Healthier Generation's Out-of-School Time initiative has been working since 2011 in eight cities to support the adoption of the National Afterschool Association's healthy eating and physical activity (HEPA) standards by before-school, afterschool, and summer programs.
DATE:
TEAM MEMBERS:
Daniel HatcherCrystal Weedall FitzsimonsJill Turley
What would it be like to increase the number of youth-serving volunteers who can competently lead science, technology, engineering, and math (STEM) activities? This question guided the Inquiry in the Community project, launched in 2008. Along with Girl Scout staff colleagues and volunteers, the project created a system for embedding inquiry-based science into a youth development organization.
Over the last ten years, out-of-school-time (OST) science programs have multiplied to increase young people’s exposure to science. However, there are still not enough opportunities for long-term engagement, which is essential to move youth from having interest in science to having the skills, knowledge, and self-efficacy to pursue careers in science. This article describes findings from exploratory research conducted to document the experiences of a small group of young women of color who participated in a museum-based OST program during their middle and high school years.
With 8.4 million children in the US spending an average of eight hours a week in afterschool programs, afterschool providers are an important part of the network of caring adults who can help to keep children safe. This article explores the topic of mandated reporting of suspected child abuse by afterschool staff.
Grounded in literature on best practices in science education, this article describes a systematic and intentional approach to developing out-of-school time (OST) science curricula and professional development models. Examples from the California 4-H Science, Engineering, and Technology Initiative demonstrate promising practices in action.
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
This Science Learning+ project will develop a Youth Access & Equity Research & Practice Agenda, focusing on addressing equity issues for youth, ages 11-14, primarily from non-dominant backgrounds. The project will involve researchers and practitioners from three ISL settings/contexts, (1) Designed spaces, e.g., museums; (2) Community-based, e.g., afterschool clubs; and (3) Everyday science, e.g., science media. The goal of the agenda will be to advance scholarly understanding of equity issues in relation to these three contexts. Taking an ecological view of STEM learning as a sociocultural process of participation and transformation, the project will employ a Complex Adaptive System lens to document multiple pathways youth take (or not) within/across ISL settings over time, the impact these pathways have on learning and development, and their influence on ISL organizations themselves. These lenses will help us identify aspects of learning environments which shape youth access and development, and the value and impact of the equity ideas, tools and practices.