The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
In this article I critically examine the historical context of science education in a natural history museum and its relevance to using museum resources to teach science today. I begin with a discussion of the historical display of race and its relevance to my practice of using the Museum’s resources to teach science. I continue with a critical review of the history of the education department in a natural history museum to demonstrate the historical constitution of current practices of the education department. Using sociocultural constructs around identity formation and transformation, I
AMNH will use NOAA weather satellite data to annotate 72 high definition (HD) video time-series global cloud cover visualizations using thermal infrared brightness temperature data acquired by five geostationary satellites and joined into global mosaics at half-hourly intervals. The HD visualizations will be used in informal and formal education activities and will be made available on the Web. These media pieces will be used for informal education activities at AMNH and 28 other informal science institutions (ISI) around the United States . The target population of visitors to subscribing ISIs is currently ten million and is projected to be over 15 million by the end of the grant. The HD visualizations will be used in formal settings, as well. Fifteen schools throughout New York City with large numbers of new English Language Learners will be targeted and professional development for teachers of ELL students will be provided through programs at AMNH as well. AMNH s effort focuses on weather and climate patterns that will be visible in the cloud-data visualizations. All viewers of the media will learn about general circulation patterns and changes in phase of water associated with the hydrologic cycle.
Being aware of the fact that science is a decisive factor for development and individual well being and a citizen's right, no less important than all his other rights, Tunisia's new-Era initiated its Science City on 10 April, 1992. The purpose of such an institution is to disseminate science throughout the whole of Tunisia for the different categories of citizens and to help, in the context of dovetailing with the educational sector, youngsters get, from their earliest years, interested in science and its use.
The article presents advice by the authors for helping middle school science teachers in the U.S. to plan field trips related to science education. The authors say that the teachers should try to make the field trips a significant learning experience. They should communicate the goals of the trips to the students. According to them, many science museums offer pretrip planning meetings to allow teachers to know the resources available for students. They also offer excellent web sites for planning the trips.
The museum visit is an important part of elementary school science teaching. However, a divide exists between teachers, who require curricular accountability, and museums, who emphasize free-choice exploration. Can a carefully constructed worksheet bridge this divide by providing free-choice exploration of curricular topics during the museum visit? In the present study, a theoretical framework was constructed to inform the design of worksheets as free-choice learning devices. This framework was used to analyze the design of an existing museum worksheet. Subsequently, curriculum-related
The study aims to characterize contextual learning during class visits to science and natural history museums. Based on previous studies, we assumed that “outdoor” learning is different from classroom-based learning, and free choice learning in the museums enhances the expression of learning in personal context. We studied about 750 students participating in class visits at four museums, focusing on the levels of choice provided through the activity. The museums were of different sizes, locations, visitor number, and foci. A descriptive-interpretative approach was adopted, with data sources
Marshall Barnes was chosen by Larry Bock, founder of the USA Science and Engineering Festival as a late addition to the USASEF after viewing Marshall's impressive SuperScience for High School Physics activities for National Lab Day and his emphasis on advanced concept science and technologies. Marshall was given free booth space to set-up an exhibit that featured what is now being called "STEAM" or Science, Technology, Engineering, Art, Math and was fairly interactive. Marshall's booth emphasized his actual research that the visitors could take part in or analyze themselves. He had a VCR, TV, CD player, MacBookPro laptop and his own invention - the Visual Reduction Window. There were four elements to the exhibit. There was a TV monitor that showed a scene from a movie that you could view with 3D glasses for TV that Marshall invented that work even with one eye closed. At different times that same monitor would feature footage from an experiment that Marshall conducted to produce one of Nikola Tesla's ideas that Tesla never accomplished - a wall of light. This same footage could be analyzed by the visitors - frame by frame, on the Mac computer to see exactly how the principle of resonance produced the wall of light from the build-up of reflections off a physical wall created by strobe lights. Visitors could also listen to hyperdimensional music that Marshall produced that takes any kind of music to a new listening experience. Based on the concept that music is a coded language with cues and instructions that are cognitively recognizable when translated, Marshall invented techniques and technologies that allow such translations and brought examples for visitors to listen to. They included an upcoming radio show theme and the soundtrack to a documentary on the reality behind Fox TV's FRINGE. The music featured song elements that move around between the speakers and make you feel like the music is alive. The most dramatic of all was the Visual Reduction Window, again invented by Marshall, that made kids look transparent and at times, almost completely invisible. Based on his famous research into invisibility, which is documented at the Santa Maria Experiment exhibit in the Santa Maria Education Visitor's Center in Columbus, Ohio, the effect of real life transparency is stunning and Marshall, the world's leading expert on invisibility research was able to describe the physics behind what he was doing and its applications in the real world. His approach to invisibility is superior to those methods pursued by Duke University and others, trying to do the same with metamaterials, and is based on a completely different model of invisibility that he calls, Visual Density Reduction or VDR. Using VDR techniques, Marshall can make attack helicopters, small gun boats, tanks and many other things invisible, which is why he doesn't reveal the current level of his research, due to National Security reasons. Overall, the exhibit was a wild success and serves as a model for a traveling exhibit for informal science at malls, fairs, science centers, and other festivals.
The Santa Maria Experiment exhibit concerns the original and successful invisibility research that initially took place in Columbus, OH in 1994 and documents the scientific principles behind how and why this research worked. It consists of two display panels filled with charts, articles and photographs and is written so that elementary children can easily read and understand the information. It also includes a video documentary for viewing that shows the research in progress and demonstrates its abilities as well as limitations. The exhibit gets its name from the fact that the largest target used for the invisibility tests in 1994, was the full scale replica of Christopher Columbus' flag ship, the Santa Maria. The ship was made to appear almost complete invisible when viewed through a special light bending material that lead investigator, Marshall Barnes, used to see if refracted light would indeed produce "mirages of invisibility". The story about this research eventually went around the world and in 2006 it was suggested that a permanent exhibit be set-up for educational purposes and be a positive draw for visitors. Housed at the Santa Maria Seeds of Change Visitor Education Center on the Scioto riverfront in downtown Columbus, OH,and officially opened on Columbus Day 2007, this is the only exhibit in the world that brings this much fantasized, as well as scientifically misunderstood subject, into accurate, scientific focus.
This study compared grandparent–grandchild groups who experienced an informal science exhibition by visiting a museum or by visiting a website. Although intergenerational learning is often the focus of visitor research, few studies have focused specifically on grandparents as an audience. Do they have unique intergenerational needs that museums and websites are not yet supporting? Do they find museums and websites to be good places to learn alongside their grandchildren? The authors’ findings suggested that grandparents prefer museums as locations for intergenerational learning because the museum
The Science Museum of Minnesota conducted a study to find out how many visitors stopped at the Science on a Sphere (SOS) exhibit during their visit to the museum, visitors' prior knowledge of SOS, and why a visitor might chose not to visit SOS. A total of 189 visitors were interviewed. Findings included: - Groups of adults and children were more likely to visit SOS than groups composed of adults only. - Most visitors just happened across the exhibit during their visit rather than sought it out. - Of the visitors who did not stop at SOS, few were familiar with the exhibit. - Both visitors who
Too Small to See is a 5,000 square-foot interactive traveling museum exhibition designed to provide hands-on nanotechnology science education to youth age 8 to 13 and adults. It debuted at Disney's Epcot and will reach over three million people during a five-year US tour. This evaluation examines the exhibition’s outcomes and impact on increasing visitors’ awareness of, interest in, engagement with, and understanding of nanoscale science, engineering, and technology. An overarching goal is to document the project’s contribution to the portfolio of federally funded Science Technology
DATE:
TEAM MEMBERS:
Douglas SpencerTina PhillipsTori AngelottiShane MurphyFred ConnerCornell University