In this article, staff at the University of Florida's Florida Museum of Natural History discuss the efforts of the Learning in Informal Settings Program, including three international evaluation studies.
DATE:
TEAM MEMBERS:
John J. Koran, Jr.Mary Lou KoranBetty Dunckel CampAnne E. Donnelly
In this article, Lisa C. Roberts of the Chicago Park District discusses the "From Knowledge to Narrative: Educators and the Changing Museum" book published by the Smithsonian Institution Press in 1997. Roberts provides a synopsis of the book and its implications for the museum field.
The Milwaukee Public Museum will develop Adventures in Science: An Interactive Exhibit Gallery. This will be a 7250 sq. ft. interactive exhibit with associated public programs and materials that link the exhibit with formal education. The goal of Adventures in Science is to promote understanding of biological diversity, the forces that have change it over time, and how scientists study and affect change. The exhibit will consist of three areas. "Our Ever-Changing World" will feature "dual scene" habitat dioramas that will convey at-a-glance how environments change over time. "The Natural History Museum" will be a reconstruction of a museum laboratory and collections area to protray behind-the-scenes scientific and curatorial activities that further the study of biological diversity, ecology and systematics. An "Exploration Center: will bridge these two areas and will be designed to accommodate live presentations, group activities and additional multimedia stations for Internet and intranet access. Using interactive devices, visitors will be encouraged to make hypothesis, examine evidence, compare specimens, construction histories of biological and geological changes, and develop conclusions about the science behind biodiversity and extinction issues. Visitors should also come away with an increased understanding of the role of systematic collections in understanding biological diversity. Information on MPM research programs will be highlighted in "The Natural History Museum" section and will be updated frequently. Annual Teacher Training Institutes for pre-service and in-service teachers will present strategies for using the gallery's multimedia stations, lab areas, and Web site links. Special attention will be given to reaching new audiences including those in the inner city and people with disabilities.
DATE:
-
TEAM MEMBERS:
Allen YoungJames KellyPeter SheehanSusan-Sullivan BorkinRolf JohnsonMary Korenic
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
This report details the findings from an exploratory research study conducted by the Research and Evaluation Department at the Museum of Science, Boston about this exhibition, which came to be known as Provocative Questions (PQ). This investigation was guided by the following questions: 1. Will visitors engage in socio-scientific argumentation in an un-facilitated exhibit space, and are they aware that they are doing so? 2. How do the un-facilitated exhibits impact visitors’ socio-scientific argumentation skills? For the exploratory research study, visitors were cued to use the exhibits and
Researching Visual Arts Education in Museums and Galleries brings together case studies from Europe, Asia and North America, in a way that will lay a foundation for international co-operation in the future development and communication of practice-based research. The research in each of the cases directly stems from educational practice in very particular contexts, indicating at once the variety and detail of practitioners' concerns and their common interests.
Most free-choice science learning institutions, in particular science centers, zoos, aquariums, and natural history museums, define themselves as educational institutions. However, to what extent, and for which visitors, do these free-choice learning settings accomplish their educational mission? Answering this question has proven challenging, in large part because of the inherent variability of visitors to such settings. We hypothesize that the challenges of measuring free-choice science learning might be diminished if it were possible to pool populations during analysis in ways that reduced
Almost every metropolitan area has an informal science setting, such as a natural history museum, zoo, science center or planetarium (Laetsch et al, 1980). Visitor demographics over the years have consistently shown that family groups constitue approximately 60% of all visitors to these settings (Bickford et al, 1992; Balling et al, 1985; Alt, 1980; Laetsch et al, 1980; Ham, 1979; Borun, 1977; Cheek et al, 1976). U.S. Bureau of the Census statistics in 1984 indicated that museum-going was rapidly becoming the single most popular, out-of-the-home family activity in American and this was
As more and more people look to institutions of informal education os places where science education occurs (Kimche, 1978; Tressell, 1980), increased attention has focused upon assessing learning in these out-of-school settings. In particular, instituions such as museums, nature centers, and zoos have devoted considerable efforts towards developing evaluation techniques. A multitude of procedures and approaches have been tired. These include questionnaires (Eason & Linn, 1976; Borun, 1977), empirical testing designs (Screven, 1974; Snider, Eason, & Friedman, 1979; Wright, 1980), and various
This volume explores the integration of recent research on everyday, classroom, and professional scientific thinking. It brings together an international group of researchers to present core findings from each context; discuss connections between contexts, and explore structures; technologies, and environments to facilitate the development and practice of scientific thinking. The chapters focus on: * situations from young children visiting museums, * middle-school students collaborating in classrooms, * undergraduates learning about research methods, and * professional scientists engaged in
The aim of the work reported here has been to give an overview of the support that the informal sector provides for learning and engagement with science. In addressing this goal, we have taken the view that engagement with science and the learning of science occur both within and without schools. What is of interest is not who provides the experience or where it is provided but the nature and diversity of opportunities for science learning and engagement that are offered in contemporary UK society. Thus in approaching the work we have taken a systems perspective and looked at informal
In the spring of 1999, the Board of the National Association of Research in Science Teaching (NARST) established an Informal Science Education Ad Hoc committee, co-chaired by Lynn Dierking and John Falk. The Committee's task was to focus on the organization's positioning in regard to out-of-school science education. After 2 years of work, the committee composed a policy statement, included below, that was presented to, and accepted by, the NARST board. The policy statement defines this arena of research, describes a variety of out-of-school environments in which science learning occurs