"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "
Educational policy increasingly emphasizes knowledge and skills for the preprofessional “science pipeline” rather than helping students use science in daily life. We synthesize research on public engagement with science to develop a research-based plan for cultivating competent outsiders: nonscientists who can access and make sense of science relevant to their lives. Schools should help students access and interpret the science they need in response to specific practical problems, judge the credibility of scientific claims based on both evidence and institutional cues, and cultivate deep
DATE:
TEAM MEMBERS:
Noah FeinsteinSue AllenEdgar Jenkins
resourceresearchProfessional Development, Conferences, and Networks
The "community of practice" (CoP) has emerged as a potentially powerful unit of analysis linking the individual and the collective because it situates the role of learning, knowledge transfer, and participation among people as the central enterprise of collective action. The authors’ surface tensions and highlight unanswered questions regarding CoP theory, concluding that it relies on a largely normative and underoperationalized set of premises. Avenues for theory development and the empirical testing of assertions are provided.
This essay seeks to explain what the “science of science communication” is by *doing* it. Surveying studies of cultural cognition and related dynamics, it demonstrates how the form of disciplined observation, measurement, and inference distinctive of scientific inquiry can be used to test rival hypotheses on the nature of persistent public conflict over societal risks; indeed, it argues that satisfactory insight into this phenomenon can be achieved only by these means, as opposed to the ad hoc story-telling dominant in popular and even some forms of scholarly discourse. Synthesizing the
Connected learning is an educational approach designed to make learning relevant to students, creating a deeper form of learning and understanding that will help students become life-long learners who will grow and thrive in school, work and life. Afterschool programs have long been implementing this approach that ties together students interests, peer networks and academic pursuits. This report explores the benefits of using a connected learning approach, the variety of ways afterschool programs are offering connected learning opportunities to engage students in learning, and shares ideas on
The "places" of learners and practitioners of science from communities of color are increasingly a focus in analyses of science learning and education in the U.S. Typically, these places are defined through the discourse of equity that focuses on representation and the goal of creating learning environments that will allow students of color to perform as well as their white peers. More recently, this focus has shifted from performance to actual knowledge of and the ability to think critically about science, technology, engineering, and mathematics (STEM) content. Although critical thinking and
DATE:
TEAM MEMBERS:
Megan BangDouglas MedinGregory Cajete
Indigenous people are significantly underrepresented in the fields of science, technology, engineering and math (STEM). The solution to this problem requires a more robust lens than representation or access alone. Specifically, it will require careful consideration of the ecological contexts of Indigenous school age youth, of which more than 70% live in urban communities (National Urban Indian Family Coalition, 2008). This article reports emergent design principles derived from a community-based design research project. These emergent principles focus on the conceptualization and uses of
In this article, we present a model for thinking about how learning settings provide resources for the development of the practice-linked identities of participants, drawing on data from a study on an African American high school track and field team. What does it mean to make an identity available in the context of a learning setting? In this article, we draw on current theories in anthropology, psychology, sociology, and sociocultural theory to develop a conceptual frame that might be helpful in addressing these questions. We focus on how individuals are offered (and how they take up)
There can be a mistaken impression that the new vision for K-12 science education is only relevant to classroom science instruction. But youth frequently engage in powerful science and engineering activities that take place after or outside-of-school. They learn STEM content, engage in STEM practices, and develop an understanding of how STEM is used in the world. To capitalize on those assets, educators and other stakeholders should learn about, leverage, and broker connections for youth across the STEM learning experiences available in and out of school.
Stories help people form relationships and make sense of the world around them. Business, medicine, and education have long used stories---or cases---as teaching and professional development tools. In the family engagement field, reading cases challenges those who work with families to consider multiple perspectives; think critically about real-world issues; communicate effectively; and identify family strengths. These are all abilities that educators need to work effectively with families. With this in mind, Harvard Family Research Project and the Community Engagement Team in the Department
DATE:
TEAM MEMBERS:
Margaret Caspe
resourceprojectProfessional Development, Conferences, and Networks
The Space Telescope professional development program is designed to support the needs of formal and informal educators and enhance educators' science content and pedagogical knowledge. Scientist and educator teams present STEM topics and the latest educational research, while emphasizing real-world connections. The purpose is to share information about the James Webb Space Telescope mission, support the teaching of standards-based science, and incorporate Hubble discoveries into educational settings.
DATE:
TEAM MEMBERS:
Space Telescope Science InstituteBonnie EisenhamerFrank SummersJohn Maple
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE:
-
TEAM MEMBERS:
Katherine PerkinsDaniel SchwartzMichael DubsonNoah Podolefsky