This paper provides an interesting insight into how educators can support learners in coming to understand the nature of matter. Whilst the specific focus is on students’ implicit assumptions and reasoning strategies in a particular domain, the broader discussion exploring the differences between novice and expert thinking is relevant to all educators seeking to support learners to engage with new content.
Successfully combining youth development with workforce preparation means creating opportunities for work-based learning, where youth are learning workplace skills through work rather than learning about a specific career path. This paper summarizes the ways in which workforce skills such as communication, critical thinking, leadership, and teamwork can be cultivated through three types of program models: “value-added,” “growing your own,” and employer partnerships.
DATE:
TEAM MEMBERS:
Fan Kong
resourceresearchMuseum and Science Center Exhibits
The authors of this paper were interested in knowing how parents can support exploratory behaviors of their preschool-aged children at museum exhibits. They developed a quantitative instrument based on psychological literature on exploration and play in order to describe and quantify young children's increasing levels of exploration of their environment. They then tested the measurement tool with parents and their preschool-aged children to investigate what types of adult coaching would achieve high-level exploratory behavior at various exhibits.
This study is an examination of the patterns of explanation in adult museum visitors about evolution and creationism, and the coherence of their reasoning patterns, including the persistence of intuitive childhood beliefs. The responses of all the visitors were a mix of novice naturalistic (intuitive), informed naturalistic (evolutionary), and creationist reasoning patterns. This paper can be of help to science educators to recognize different patterns of visitors’ reasoning about evolution to support the development of a more informed understanding of natural selection, the micro- and macro-
The paper describes how middle school students appropriated and transformed a particular learning experience in an afterschool literacy program in Philadelphia. The learning experience was designed to ensure that urban African-American, middle school girls had access to technology and learned how to use it to create a web page that showcased future career aspirations. The program’s director enlisted the help of male, Caucasian high school students from the suburbs of Philadelphia to facilitate the technology learning experience for the middle school youth (both girls and boys were in the
This study identifies the elements of natural pedagogical conversations during an internship in a science laboratory. It offers ISE practitioners insight into how scientists teach science in their labs, how youth interns initiate learning, and describes productive conversational forms that may impact their own work with youth.
What are the core ideas of learning genetics? How can we build coherent learning experiences to support these ideas? Learning progressions are an approach to outline how learners come to understand abstract concepts over time. This article describes a learning progression that promotes understanding of genetics from late elementary school into high school.
A 40-minute inquiry lesson comprising demonstration, proposal, experiment, and report to 224 ninth-grade students organized by the author provided evidence that situational interest can be developed through such activities compared to copying notes from the text and during the lecture. Situational interest, generated by the aspects of a specific situation (e.g., a spectacular demonstration may arouse students’ interest temporarily, even if they are not normally interested in science), is a short-time interest. Although it is a transient occurrence, the author’s previous findings suggest that
Out of 85 scientists and graduate students interviewed, 65% state that their initial interest in science occurred before middle school, particularly for those in physics-related fields. The interest was attributed as self-interest (45%) or intrinsic motivation. However, a large proportion discuss initial experiences related to school- or education-based experiences, including enrichment activities (40%) and family (15%).
In teacher-student interactions during pre-visit, in-museum, and post–field trip interactions, open-ended styles of questions tended to happen more often during the in-museum part of the field trip, although closed-ended questions were still more frequent overall.
The formal introduction of learners to scientific phenomena is accompanied by the need to reconcile what they are being taught in classrooms with their informal or pre-existing conceptualizations of the same phenomena. Reconciled formal and informal conceptualizations represent what the authors of this study refer to as “conceptual continuity,” which, they argue, is an important asset for science educators seeking to support students’ conceptual development. In this paper, authors studied the ways in which high-school baseball players expressed their understanding of how curveballs curve using
Observation is a key skill in science. It is also an important initial skill in early learning. In this paper, Johnston examines the skill of observation in 56 children (4–11 years), asks how it influences other skills in science, and considers how it may be supported. The paper draws attention to that fact that in recent years primary science education has been about the acquisition of conceptual knowledge rather than key skills, and that this balance may not be justified. Of further interest to ISE practitioners is Johnston’s comments that contexts where children can observe natural