Skip to main content

Community Repository Search Results

resource research Making and Tinkering Programs
This report, from the "Tinkering EU: Building Science Capital for All" project, provides a theoretical rationale for understanding the relationship between Tinkering as a pedagogical approach, students’ individual science capital, and inclusive STEM teaching approaches. By exploring the relationship between these three areas, it invites professionals to reflect on the ways in which Tinkering can be used a teaching tool for building science capital.
DATE:
TEAM MEMBERS: MARIA XANTHOUDAKI Emily Harris Mark Winterbottom
resource project Afterschool Programs
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).

Coordinator: National Museum of Science and Technology Leonardo da Vinci

Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource research Professional Development, Conferences, and Networks
This is a list of participants who attended the Support Systems for Scientists' Communication and Engagement Workshop IV: Science Engagement Facilitators. This workshop was held on May 2 and 3, 2018 at the Monterey Bay Aquarium in Monterey, CA.
DATE:
TEAM MEMBERS: Brooke Smith
resource research Informal/Formal Connections
In the United States, broad study in an array of different disciplines —arts, humanities, science, mathematics, engineering— as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century
DATE:
TEAM MEMBERS: David Skorton Ashley Bear National Academies of Sciences, Engineering, and Medicine
resource research Public Programs
The purpose of this study is to thoroughly describe a program designed to strengthen the pipeline of Latino students into post-secondary science, technology, engineering, and mathematics (STEM) education, and present evaluation data to assess multiyear effectiveness. The program includes a suite of interventions aimed at students and families, and was implemented in a low-income school cluster with a high Latino population in metro Atlanta. Our intervention includes a high school and middle school mentoring program, STEM-focused extracurricular activities (summer camps, research and community
DATE:
TEAM MEMBERS: Diley Hernandez Marion Usselman Shaheen Rana Meltem Alemdar Analia Rao
resource research Media and Technology
Previous research has identified parental involvement—the ways parents and other caring adults interact with children in and outside of the home, and the kinds of learning materials with which parents surround children—as key to helping children develop knowledge and skills in literacy and math (Bassok, Finch, Lee, Reardon, & Waldfogel, 2016; Burgess, Hecht, & Lonigan, 2002; Niklas, Nguyen, Cloney, Tayler, & Adams, 2016; Sénéchal & LeFevre, 2002; Skwarchuk, Sowinski, & LeFevre, 2014). Parental support may be critical to children’s developing knowledge and understanding in science as well.
DATE:
TEAM MEMBERS: Megan Silander Todd Grindal Naomi Hupert Elisa Garcia Kea Anderson Philip Vahey Shelley Pasnik
resource research Professional Development, Conferences, and Networks
This poster was presented at the 2018 Campus Office of Undergraduate Research Initiatives (COURI) Symposium in El Paso, TX. It describes challenges and lessons learned regarding the use of cogenerative dialogues (cogens) in the context of a project-based learning environment.
DATE:
TEAM MEMBERS: Yamile Urquidi Pei-Ling Hsu
resource research Professional Development, Conferences, and Networks
This poster was presented at the 2018 Campus Office of Undergraduate Research Initiatives (COURI) Symposium in El Paso, TX. It describes an ethnographic study to investigate how an exemplary scientist engaged high school students with humor during a project-based learning science internship.
DATE:
TEAM MEMBERS: Jaime A. Cano Pei-Ling Hsu
resource research Professional Development, Conferences, and Networks
This poster was presented at the 2018 Campus Office of Undergraduate Research Initiatives (COURI) Symposium in El Paso, TX. It discusses the difficulty faced by high school students in generating project ideas, and seeks to identify different activities and methods that instructors use to facilitate the development of project ideas in a project-based learning internship environment.
DATE:
TEAM MEMBERS: Valerie Acuna Pei-Ling Hsu
resource research Public Programs
This poster was presented at the annual meeting of the National Association for Research in Science Teaching (NARST) in Atlanta, GA. It discusses how cogenerative dialogues (cogens) might serve as a tool to dissolve emotional breakdowns in a project-based learning (PBL) science internship.
DATE:
TEAM MEMBERS: Kenneth Tobin Pei-Ling Hsu
resource research Public Programs
The overarching goal of the Students Discover project is to improve STEM education in middle schools by developing a model for engaging students with real science. Over the past three years, the project has brought together teachers, scientists, district leaders, and other institutional partners to facilitate the successful implementation of citizen science projects in the classroom. Project activities aim to create a context for student engagement with real, ongoing scientific research by making citizen science projects accessible to the formal classroom environment. Citizen science lessons
DATE:
TEAM MEMBERS: Suzanne Branon Sherry Booth Freeman Lauren Bryant LaTricia Townsend Malinda Faber
resource research Informal/Formal Connections
Data are the workhorses of the scientific endeavor and their use is rapidly evolving (Haendel, Vasilevsky, and Wirz 2012). Ask almost any scientist about their work, and the conversation will involve the data they collect and analyze. The use of data in science is often captured in science classrooms as an ill-defined link between math and science that may not reflect authentic data practices (Tanis Ozcelik and McDonald 2013). Students often find themselves collecting data to confirm obvious conclusions within highly structured labs, and data become a way for students to demonstrate the
DATE:
TEAM MEMBERS: Michael Giamellaro Kari O'Connell