Situated within the Advancing Informal STEM Learning program, this Research in Service to Practice award seeks to design, implement, and evaluate an intervention aimed at fostering a culture of productive failure practices. The project responds to a broad concern in educational research and practice: Experiences of failure are frequently so negative that students shut down, lose agency, and develop low self-efficacy and learned helplessness. Surrendering too quickly to obstacles is particularly unfortunate, given evidence that initially "getting it wrong" ultimately breeds deep and sustained learning. In order to learn how students can make the most of productive failure, the proposed project will study how a community of practice that includes middle school youth and their mentors attempts to change its handling of learning obstacles. Building on prior research documenting storytelling practices in an afterschool program, the team now aims to embolden young students' productive practices of failure storytelling in computer science, a field in which experts practice candid, pervasive, and collaborative discourse around errors ("bugs"). Pulling together the domains of narrative analysis, meta-cognitive reflection, and control theories of motivation, within the context of authentic computer-science debugging activity, this study develops a theoretical framework that views productive responses to failure as a discipline-specific process of reflecting as a community on how to locate obstacles, how to construct causal theories about why those obstacles emerged, and how to plan productive responses. A design-based research approach will investigate three questions: (1) What is the impact of the interventions on students and instructors' actions and discourse when they are debugging errors in computer code? (2) What is the impact of the interventions on students and instructors' reflections back on their prior debugging experiences and on failure in general? and (3) What is the impact of the instructor-development efforts on the instructors' capacity to foster students' productive attitudes toward failure? The study focus will be 15 summer and weekend coding workshops with 5th-8th grade students from populations typically under-represented in STEM. The interventions are (a) setting new norms and practices for debugging, (b) instructor education, and (c) coding software that provides students with feedback on their productive struggle. Data sources include video and audio recordings of the learning environment, artifacts produced during the activities, and semi-structured interviews. Measures will capture variations in debugging activities, reflections on debugging, students' ideas about grit and growth mindset, and instructors' struggles and successes with the new curriculum. The empirical results will consist of mixed-methods, micro-longitudinal accounts of how a community of practice works to reform its orientation to failure. The products of this work include empirical knowledge, theory, and curriculum about how learning communities help students develop robust and efficient responses to failure. These will be disseminated through journals, open-source software, and workshops/conferences for researchers and practitioners working with youth afterschool programs. The products may be useful for exploring practices in the classroom. This project is being conducted by the 9 Dots Community Learning Center, UCLA and UC Berkeley.
DATE:
-
TEAM MEMBERS:
Melissa ChenDor AbrahamsonNoel EnyedyFrancis SteenDavid DeLiema
Currently, many young people - especially girls and youth of color - lose confidence and interest in science, technology, engineering and math (STEM) pathways due to a perceived disconnect between their own identity and STEM fields. To address this challenge, Twin Cities PBS (TPT) is implementing SciGirls CONNECT2. This three-year Research in Service to Practice award examines how gender equitable and culturally responsive teaching strategies influence middle school girls' confidence, interest and motivation around STEM studies, and their choices around STEM careers. A set of research-based strategies, called the SciGirls Seven, are currently employed in SciGirls, an NSF-funded informal STEM educational outreach program serving 125+ educational partner organizations nationwide. The goal is to update and enrich the SciGirls Seven, providing educators with a critical, current, and more effective resource to motivate girls in STEM studies and careers. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Florida State University will conduct a formal research study investigating the hypothesis that STEM programs that use gender equitable and culturally responsive strategies contribute to girls' positive STEM identity development, including their sense of self-efficacy, persistence and aspirations around future STEM careers. This research will include a literature review and a study of girls' STEM identity creation. The mixed methods study will include quantitative and qualitative data collection and analysis measuring changes in students' STEM identity and teachers' confidence in STEM teaching. The quantitative data will come from the student, parent and teacher pre/post surveys. The qualitative research will be conducted via case studies at four sites and the qualitative data will include observations, focus groups and interviews. Girls at all partner sites will create videos that will allow the research team to gather additional insight. The independent firm Knight Williams, Inc. will conduct the project's external evaluation.
The project will work with a subset of 16 current SciGirls partners. These geographically diverse partners will reach youth in all-girls and co-ed informal STEM education programs in a variety of settings. More than half serve Hispanic or other minority populations. The updated strategies will be disseminated to the 2,500 educators within the SciGirls partner network and the 18,800 STEM education organizations of the National Girls Collaborative Project (NGCP) network. Dissemination of the strategies and literature review will focus on the informal STEM education field through publications and presentations, posts at PBS LearningMedia, a free online space reaching 1.5 million teachers and educators.
Young people learn about science, technology, engineering, and math (STEM) in a variety of ways and from many sources, including school, the media, personal experiences, and friends and family. Yet STEM participation and identification by youth are not equal across social, economic, and cultural communities. This project will study a long-term, out-of-school program for high school-age youth, who are from groups under-represented in STEM academics and careers: girls, youth from low-income households, and youth of color. Located in the urban context of the Science Museum of Minnesota, the Kitty Andersen Youth Science Center (KAYSC) engages youth in applying culturally rich STEM content to work toward social justice and community building. Specifically, this project will examine how the learning practices of the KAYSC model support youth in identifying with, engaging in, and participating in STEM. Through studying the KAYSC's STEM Justice model, which centers youth as learners, teachers, and leaders who address critical community issues through STEM, this project will develop resources that informal science educators in a variety of contexts and programs can use to promote positive social change, equity, inclusion, and applied STEM learning.
The Science Museum of Minnesota will use design-based implementation research to study this model. This research will draw on and further the emerging theoretical framework of science capital. Science capital attempts to capture multiple aspects of science learning and application, including science knowledge, social and cultural resources, and science-related behaviors and practices. Empirically developing the theory of science capital has the potential to build concrete understanding of how to address inequalities in science participation. Four teams will work independently and collaboratively to do so: an adult research team, a high school youth research team, a practitioner team, and a co-design team composed of representatives from the other three teams. Research teams will collect data in the form of observations, semi-structured interviews, practitioner activity reports, artifacts, and the experience sampling method. Initial cycles of design will occur at the Science Museum of Minnesota as researchers and practitioners document, analyze, and iteratively design learning practices within the STEM Justice model. In the second half of the grant, the team will work with an external out-of-school time youth leadership site to implement the redesigned model. Participatory research and design methods involving both youth and adults can advance understanding of what makes out-of-school time STEM learning meaningful, relevant, and successful for marginalized youth and their communities. Grounded in culturally and socially relevant, community-based resources and programming, this project will study how leveraging STEM out-of-school time learning connected to social justice can broaden access to STEM as well as develop workforce, and leadership, and STEM skills by under-represented youth. The project also builds staff capacity for promoting equity and access in informal learning settings.
This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of Science, Technology, Engineering, and Mathematics (STEM) learning in informal environments. Roughly one million refugees resettled in the United States in the past decade, many of whom are school-aged youth. During secondary school, resettled refugee youth are often still developing English language literacy and STEM skills needed for successful postsecondary experiences in the United States. At the same time, these youth bring rich cultural and linguistic resources that they can use as an asset as they grow their STEM skill sets, prepare for future success, and make positive impacts on U.S. society. To promote these assets and engage youth in developing STEM literacy, this after-school program engages these youth in critical STEM literacy development. The project focuses on STEM learning, specifically the relationship between human life and climate, as well as developing youths' STEM identities and agency.
The project will develop and implement a community-based afterschool program that provides resettled Burmese refugee youth with STEM learning experiences. By drawing upon youths' experiences, the program will engage youth in learning about climate science and developing digital stories to communicate with broader audiences. To do so, the team will implement a program that builds on principles of responsive teaching, funds of knowledge, and English literacy development in authentic meaning-making contexts. The project will examine how youth expand their STEM knowledge, develop STEM identities and agency, and develop their expertise in communicating about STEM within and beyond their participation in the after-school program. The research team will explore existing and innovative data collection and analysis methods by drawing on principles of ethnography, video ethnography, mediated discourse analysis, and phenomenological and ethnomethodological analysis of interviews. These analyses will document learning over time in informal STEM learning settings. As there is very little prior research on STEM learning in this population, this project will generate knowledge about how to support STEM sense-making and critical STEM literacy. Furthermore, by testing the designed curriculum and building a partnership with a local community organization, the project will build capacity for broadening participation in informal STEM learning practices.
The lack of diversity in the clinician-scientist workforce is a “very serious concern to the NIH” and to health care professions. Current efforts to broaden participation in STEM fields typically target high school and college-age students. Yet, history and national trends suggest that these efforts alone will not result in rapid or significant change because racial and ethnic disparities are already evident by this time. Children are forming career preferences as early as elementary school, a time when they have little exposure to science and STEM career options. The overall vision of this team is to meet the nation’s workforce goal of developing a diverse, clinician-scientist workforce while meeting the nation’s STEM goals. As a step toward this vision, the goal of This Is How We “Role” is to inspire elementary school students towards careers as clinician-scientists by increasing the number of K-4 students with authentic STEM experiences.
This goal will be attained through two specific aims. The focus of Aim 1 is to distribute and evaluate a K-4 afterschool program across the diverse geographic regions of the US, to support the development of a robust and diverse clinician-scientist workforce. Aim 2 is focused on developing the community resources (afterschool program curriculum, informational books and online certificate program) for promoting health science literacy and encouraging careers in biomedical and clinical research for K-4 students from underserved and underrepresented communities. Combined, these aims will enhance opportunities for young children from underserved communities to have authentic STEM experiences by providing culturally responsive, afterschool educational programs which will be delivered by university student and clinician-scientist role models who are diverse in gender, race, and ethnicity.
Books and an online certificate program about health issues impacting people and their animals (i.e. diabetes, tooth decay) will be developed and distributed to children unable to attend afterschool programs. Further, by engaging veterinary programs and students from across the US, along with practicing veterinarians, this program will examine whether the approaches and curriculum developed are effective across the diverse communities and geographic regions that span the country. Elementary school teachers will serve as consultants to ensure that educational materials are consistent with Next Generation Science Standards, and will assist in training university students and clinician-scientists to better communicate the societal impact of their work to the public.
The program will continue to use the successful model of engaging elementary school students in STEM activities by using examples of health conditions that impact both people and their animals. Ultimately, this project will educate, improve the health of, and attract a diverse pool of elementary school students, particularly those from underserved communities, to careers as clinician-scientists.
STEM learning ecosystems harness contributions of educators, policymakers, families, businesses, informal science institutions, after-school and summer providers, higher education, and many others towards a comprehensive vision of STEM learning for all children. This paper offers evidence of the impact of cross-sector partnerships on young people, and a logic model template for communities so they may further develop the attributes, strategies, and measures of progress that enable them to advance opportunities for all young people to succeed. Further research will help us expand the promise
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. CHISPA is a national network of science museums and afterschool programs affiliated with ASPIRA and National Council of La Raza (NCLR), working together to build stronger communities and increase the engagement of Hispanic children and their families with science and local science resources. The project period is October 2013 through September 2017.
The America After 3PM survey is the nation’s most comprehensive household survey of how children spend the hours after school and asks parents and guardians of school-age children in the United States about availability and access to after-school programs. The 2014 survey, which followed prior surveys conducted in 2004 and 2009, reveals that over the past decade, the number of children in after-school programs has grown from 6.5 million to more than 10 million. Parents of an additional 19.4 million children would enroll their children in a program if one were available to them.
For decades, K–12 science education researchers have echoed the need for inquiry-based teaching approaches to connect students to real scientists and science environments (AAAS 1989; NRC 1996, 2007). The Next Generation Science Standards (NGSS) amplify these needs by stressing the importance of student-developed conceptual models to explain real-world phenomena and coherent integration of authentic science practices, concepts, and core ideas across grade levels (NRC 2012; NGSS Lead States 2013).
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
Commonly described as youth-led or youth-driven, the youth-adult partnership (Y-AP) model has gained increasing popularity in out-of-school time (OST) programs in the past two decades (Larson, Walker, & Pearce, 2005; Zeldin, Christens, & Powers, 2013). The Y-AP model is defined as “the practice of (a) multiple youth and multiple adults deliberating and acting together (b) in a collective (democratic) fashion (c) over a sustained period of time (d) through shared work (e) intended to promote social justice, strengthen an organization and/or affirmatively address a community issue” (Zeldin et al
DATE:
TEAM MEMBERS:
Heng-Chieh Jamie WuMariah KornbluhJohn WeissLori Roddy
Young adulthood, typically defined as between the ages of 18 and 25, is a critical period of growth during which young people acquire the education and training that serve as the basis for their later occupations and income (Arnett, 2000). The successful transition from adolescence to early adulthood requires youth to have the skills and resources to graduate high school and then go to college or enter the workforce (Fuligni & Hardway, 2004; Lippman, Atienza, Rivers, & Keith, 2008). To accomplish these tasks in advanced urban societies, young adults need a wide range of social, cognitive