This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Makerspaces and engineering design spaces have proliferated in science museums, schools, libraries, and community settings at a rapid pace. However, there is a risk that some of the same inequities that exist in the engineering field are being replicated in these settings. Research has provided evidence of persistent gaps between boys' and girls' levels of interest in engineering as it has been traditionally represented in informal learning environments, particularly in Making and engineering spaces. This Research-In-Service to Practice project intends to address this gap by employing a design-based research approach to examine if and to what extent narrative elements can interest and engage middle school girls in science, technology, engineering, and mathematics (STEM), and promote equitable, effective engineering design experiences and practices. This work is significant, as it will build upon current research and conceptual understanding of how to design narrative-rich engineering design activities for informal learning spaces, especially for girls, and within museum drop-in experiential learning contexts. It will also contribute to the evidence base regarding how girls approach and choose to persist in solving engineering design problems. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The New York Hall of Science (NYSCI) in collaboration with the Amazeum in Bentonville, Arkansas, the Tech Museum of Innovation in San Jose, California, the Creativity Labs at Indiana University and a team of advisors will conduct the 30-month, design-based research project in two phases. In the first phase, NYSCI will garner ongoing input from its partners to develop parallel versions of six pairs of engineering design activities, one with narrative elements and one without. These activities will be iteratively tested in NYSCI's Design Lab, a 10,000 square foot exhibition devoted to hands-on exploration of engineering design. Several research questions will be explored, focused primarily on building evidence-based design knowledge, establishing appeal and comprehensibility, and understanding facilitation. Observational and interview data will be garnered from 30 girls aged 7-14 and their family groups for each of the twelve activities developed, totaling 360 girls in the study sample. The results of the research on the paired activities will be iterative and provide insight on how narrative elements can most effectively invite girls into sustained engagement with the core engineering concepts and practices highlighted in each activity. In the second phase, formative and summative evaluation will be conducted to study the impact of the narrative and non-narrative versions of the engineering design activities on participating girls' engagement and persistence, by contrasting the quality of girls' engagement across the two types of activities while they are implemented across three museum sites. Project deliverables include journal articles reporting on project findings; documentation of activities that meet project goals; design guidelines for exhibit and curriculum developers who are interested in using narrative effectively to frame engineering design activities; and practical guidance for facilitators seeking to ensure that they are supporting girls effectively as they explore those activities.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This study will capitalize on the increased availability and affordability of immersive interactive technologies, such as Augmented Reality devices and virtual characters, to investigate their potential for benefitting STEM learning in informal museum contexts. This project will combine these technologies to create an Augmented Reality experience that will allow middle-school youth and their families to meet and assist a virtual crew on a historic ship at the Independence Seaport Museum in Philadelphia. The players in this game-like experience will encounter technologies from the turn of the 20th century, including steam power, electricity, and wireless communication. Crew members and technologies will be brought to life aboard the USS Olympia, the largest and fastest ship in the US Navy launched in 1892. The historic context will be positioned in relation to current day technologies in ways that will enable a change in interest towards technology and engineering in middle school-age youth. This will result in a testbed for the feasibility of facilitating short-term science, technology, engineering and mathematics (STEM) identity change with interactive immersive technologies. A successful feasibility demonstration, as well as the insights into design, could open up novel ways of fostering STEM interest and identity in informal learning contexts and of demonstrating the impact of this approach. The potential benefit to society will rest in the expected results on the basic science regarding immersive interactive technologies in informal learning contexts as well as in demonstrating the feasibility of the integrated approach to assessment.
This project will use a living lab methodology to evaluate interactive immersive technologies in terms of their support for STEM identity change in middle-school age youth. The two-year design-based research will iteratively develop and improve the measurement instrument for the argument that identity change is a fundamental to learning. A combination of Augmented Reality and intelligent virtual agents will be used to create an interactive experience--a virtual living lab--in an informal museum learning exhibit that enables change interests towards technology and engineering and provides short-term assessment tools. In collaboration with the Independence Seaport Museum in Philadelphia, the testbed for the approach will be an experience that brings to life the technologies of the early 20th century aboard a historic ship. Through the application of Participatory Action Research techniques, intelligent virtual agents interacting with youth and families will customize STEM information relating to the ship's mission and performance. Topics explored will make connections with current day technologies and scientific understanding. Mixed-methods will be used to analyze interactions, interview and survey data, will form the basis for assessing the impact on youth's STEM interests. The elicitation method specifically includes assessment metrics that are relevant to the concept of learning as identity change. This assessment, through immersive interactive technologies, will target the priority areas of engagement in STEM as well as the measurement of outcomes.
DATE:
-
TEAM MEMBERS:
Stefan RankAyana AllenGlen MuschioAroutis FosterKapil Dandekar
The Head Start on Engineering project engages parents and children in a multicomponent family engineering program that includes professional development for teachers, workshops for parents, take-home family activity kits, home visits, classroom extensions, and a culminating field trip to a science center.
Throughout their lives, children from low socioeconomic backgrounds and traditionally underserved and under-resourced communities face significant barriers to engaging with engineering and science (Gershenson 2013; Orr, Ramirez, and Ohland 2011). Supporting learning and interest
This paper was present at the 2017 ASEE (American Society for Engineering Education) Annual Conference & Exposition.
Head Start on Engineering (HSE) is a collaborative, NSF-funded research and practice project designed to develop and refine a theoretical model of early childhood, engineering-related interest development. The project focuses on Head Start families with four-year-old children from low-income communities and is being carried out collaboratively by researchers, science center educators, and a regional Head Start program. The ultimate goal of the HSE initiative is to advance the
This cooperative agreement will support the Tech Museum of Innovation (The Tech) in San Jose, California in acquiring SOS-related hardware and software, as well as providing the technical support to facilitate the installation of SOS in The Tech's Exploration Gallery in 2005-2006. Science On a Sphere will be the focal point of The Tech Museum's newly renovated Explorations gallery. The dramatic sphere will draw visitors to the center of the 8,000 square-foot space. Hands-on experiences around the sphere will engage visitors in meaningful explorations of NOAA data. The Tech Museum will apply its exhibit and program development expertise to make SOS accessible to people of all ages, backgrounds, and educational levels. All panel text, audio, and captions will be presented in both English and Spanish to allow greater accessibility for local audiences. The Tech's SOS system will focus on three topics of great interest to Californians: Earthquakes, Ocean, Space. NOAA data will enable us to showcase the technology that is used to measure, monitor, and track environmental changes in our world. We hope to further address the potential of data modeling to aid in predicting the future state of the environment based on our actions. The Tech is also opening a new environment exhibition, Green By Design (GBD) in 2006. This exhibit focuses on how sustainable design and technological innovation offer potential solutions to many of our global environmental challenges. SOS will provide a compelling centerpiece to support the educational purpose of this gallery as it effectively illustrates how data collected with remote sensing technologies are helping us understand and make predictions about our dynamic environment and the future of our planet. SOS will illustrate how these data collecting technologies assist us in developing our knowledge about our planet and its solar system.
The FIRST Longitudinal Study is a multi-year longitudinal study assessing the impacts of FIRST’s afterschool robotics programs on the STEM related interests and educational and career trajectories of program participants. FIRST is one of the nation’s largest after-school robotics programs, serving more than 460,000 youth aged 6-18 annually through the FIRST LEGO League (Ages 7-14), the FIRST Tech Challenge (grades 7-12) and the FIRST Robotics Competition (grades 9-12). The study is tracking over 1200 program participants and comparison students, using a quasi-experimental design, over a
DATE:
TEAM MEMBERS:
Alan MelchiorCathy BurackMatthew HooverJill Marcus
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
This study introduces cogenerative dialogues as a pedagogical tool to enhance the communications between students and engineers in a university internship environment. High school student interns worked with engineers for 7 months and were invited to conduct cogenerative dialogues with engineers regularly and discuss any issues, concerns, positives happened in the internship in order to improve their learning experience.
During the preparation of the 2010 Science & Engineering Indicators, there arose a concern about measures of public knowledge of science, and how well they capture public knowledge for Chapter Seven of the Indicators. A workshop at NSF in October 2010 concluded that the process of measuring and reporting public knowledge of science should start with the question of what knowledge a person in the public needs, whether for civic engagement with science and science policy, or for making individual decisions about one’s life or health, or for feeding one’s curiosity about science. This starting
DATE:
TEAM MEMBERS:
John BesleyMeg BlanchardMark BrownElaine Howard EcklundMargaret GlassTom GuterbockA. Eamonn KellyBruce LewensteinChris ToumeyDebbie RexrodeColin Townsend
Girls met to engage with Through My Window twice each week after school. The afterschool program format provided a freer, less structured atmosphere than a classroom setting. Students extensively debated and investigated the questions and themes posed by the novel, Talk to Me. The meeting space had plenty of space for students to move around, as well as teachers who encouraged the expression of full emotional and intellectual enthusiasm for the story at hand.
East Longmeadow implemented Through My Window in two seventh grade classrooms, each teaching different subjects—creative reading and STEAM. Students used the print and audio versions of Talk to Me, and read or listened to the book independently and together, in class and at home. They also participated in both online and offline activities that, along with the book, helped them engage with ideas and propose solutions related to engineering challenges.
The Art of Science Learning, Phase 2 was an NSF-funded research and development project to investigate the value of incorporating arts-based learning techniques in STEM-related group innovation processes. The project team created a new, arts-infused innovation curriculum in consultation with leading national practitioners in the arts, creativity, and innovation, then deployed that curriculum in “innovation incubators” in San Diego, Chicago, and Worcester (Mass.) in partnership with informal STEM institutions in those cities. At each incubator, diverse members of the public (from high school
DATE:
TEAM MEMBERS:
Peter LinettSteve ShewfeltNicole BaltazarNnenna OkekeDreolin FleisherEric LaPlantMadeline SmithChloe Chittick PattonSarah LeeHarvey Seifter